通过相干合束提高光纤激光源的输出功率是目前研究的一个热门领域,其中多束激光的相位控制是提高合束效率的关键技术之一.本文基于主动相位锁定技术对传统外差探测法进行了改进,基于压电陶瓷及光纤电光相位调制器双通道伺服反馈,实现了对同一激光源输出的两路相位独立变化的1531 nm激光长时间的相位锁定.通过选择合适的PID控制参数,将反馈带宽拓展到了220 k Hz(受限于PID控制器自身带宽).最终的相位锁定控制在0.88?以内,即相位控制精度为λ/400,经过160 s平均后可得到相位锁定的最佳值为0.006?,整体实验装置结构简单、运行稳定.
A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor. The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts, shaped in an original way, and focused into a room-temperature cesium vapor. We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb, and through absolute frequency measurements.
In this paper, we study an optomechanical device consisting of a Fabry-P6rot cavity with two dielectric nanospheres trapped near the cavity mirrors by an external driving laser. In the condition where the distances between the nanospheres and cavity mirrors are small enough, the Casimir force helps the optomechanical coupling to induce a steady-state optomechanical entanglement of the mechanical and optical modes in a certain regime of parameters. We investigate in detail the dependence of the steady- state optomechanical entanglement on external control parameters of the system, i.e., the effective detuning, the pump powers of the cavity, the cavity decay rate and the wavelength of the driving field. It is found that the large steady-state optomechanical entanglement, i.e. EN = 5.76, can be generated with experimentally feasible parameters, i.e. the pump power P = 18.2 μW, the cavity decay rate K = 0.5 MHz and the wavelength of the laser AL=1064 nm, which should be checked by optical measurement.