X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
It is conventionally thought that the state equation of dense matter softens and thus cannot result in high maximum mass if pulsars are quark stars and that a recently discovered 2M⊙ pulsar (PSR J1614–2230) may make pulsars unlikely to be quark stars. However, this standard point of view would be revisited and updated if quark clustering could occur in cold quark matter because of the strong coupling be- tween quarks at realistic baryon densities in compact stars. It can be argued that the state equation of clustered quark matter stiffens to support compact stars with maxi- mum mass Mmax 2M⊙. In this brief note, it is demonstrated that large parameter space ranges are allowed for Mmax 2M⊙ in a Lennard-Jones model of clustered quark matter and the newly measured highest mass of PSR J1614–2230 would be meaningful for constraining the number of quarks inside a single quark-cluster to be Nq ≤ 103.
We compute the characteristic parameters of the magneto-dipole radiation of a neutron star undergoing torsional seismic vibrations under the action of Lorentz restoring force about an axis of a dipolar magnetic field experiencing decay. After a brief outline of the general theoretical background of the model of a vibration-powered neutron star, we present numerical estimates of basic vibration and radiation characteristics, such as frequency, lifetime and luminosity, and investigate their time dependence on magnetic field decay. The presented analysis suggests that a gradual decrease in frequencies of pulsating high-energy emission detected from a handful of currently monitored AXP/SGR-like X-ray sources can be explained as being produced by the vibration-powered magneto-dipole radiation of quaking magnetars.