Nanocrystalline diamond films were deposited on polished Si wafer surface with electron assisted hot filament chemical vapor deposition at 1 kPa gas pressure, the deposited films were characterized and observed by Raman spectrum, X-ray diffraction, atomic force microscopy and semiconductor characterization system. The results show that when 8 A bias current is applied for 5 h, the surface roughness decreases to 28.5 nm. After 6 and 8 A bias current are applied for 1 h, and the nanocrystalline films deposition continue for 4 h with 0 A bias current at 1 kPa gas pressure. The nanocrystalline diamond films with 0.5×109 and 1×1010 Ω·cm resistivity respectively are obtained. It is demonstrated that electron bombardment plays an important role of nucleation to deposit diamond films with smooth surface and high resistivity.
With electron assisted hot filament chemical vapor deposition technology, nanocrystalline diamond films were deposited on polished n-(100)Si wafer surface. The deposited films were characterized and observed by Raman spectrum, X-ray diffraction, semiconductor characterization system and Hall effective measurement system. The results show that with EA-HFCVD, not only an undoped nanocrystalline diamond films with high-conductivity (p-type semiconducting) but also a p-n heterojunction diode between the nanocrystalline diamond films and n-Si substrate is fabricated successfully. The p-n heterojunction has smaller forward resistance and bigger positive resistance. The p-n junction effective is evident.
Wu Nanchun Xia Yiben Tan Shouhong Wang Linjun Cui Jiangtao