The nonaxisymmetric acousto-electric field excited by an eccentric acoustic source in the borehole based on Pride seismoelectric theory is considered. It is shown that the acoustic field inside the borehole, converted electric and magnetic fields and coupled fields outside the borehole are composed of an infinitude of multipole fields with different orders. The numerical results show that both the electromagnetic waves and the seismoelectric field in the borehole, and the three components of both electric field and magnetic field can be detected. Measurements on the borehole axis will be of advantage to determining shear velocity information. The components of the symmetric and nonsymmetric acoustic and electromagnetic fields can be strengthened or weakened by adding or subtracting the two full waveforms logged in some azimuths. It may be a new method of directly measuring the shear wave velocity by using the borehole seismoelectric effect.
Acoustic transducer is an important part of acoustic well logging tool. In this paper,ANSYS software package is used to design acoustic dipole transducer and simulate vibrating mode of the dipole transducer in different mechanical boundary conditions. The results show that boundary conditions influence the number of vibrating mode in the same frequency band and the frequency value of the same vibrating mode. Several acoustic dipole transducers are designed according to the results of numerical simulation and laboratory measurements. The basic frequency of vibrating mode of experi-ment has good agreement with that of simulation. The numerical simulation plays a good guidance role in designing,producing and correctly installing the acoustic dipole transducer.
QIAO WenXiao,CHE XiaoHua & ZHANG Fei State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China
This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves. The analytical formula of the layer thickness related to the measured trans- mitted transfer functions is derived. The two determination steps of the four layer parameters are developed, in which acoustic impedance, time-of-flight and attenuation are first determined by the reflected transfer functions. Using the derived formula, it successively calculates and determines the layer thickness, longitudinal velocity and mass density by the measured transmitted transfer functions. According to the two determination steps, a more feasible and simplified measurement setups is described. It is found that only three signals (the reference waves, the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters. A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made. This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.