农田遥感图像在采集过程中会受到噪声影响,为得到准确的农田遥感图像数据,应对获取的农田遥感图像进行去噪预处理。农田遥感图像中的纹理承载了重要信息,在图像降噪的同时保持或增强图像纹理具有重要意义。由于纹理和噪声一样,在频域表现为高频信号,以分解和重构算法为基础的常见滤波(含小波变换)方法在降噪的同时,也会造成纹理清晰度的下降。该文结合农田遥感图像纹理呈现出来的直线特性,将剪切波(Shearlet)和变分理论相结合,提出了一种新的遥感农田图像保纹理降噪方法。该方法首先对较大的遥感图像分块进行shearlet变换,在降噪的同时识别不同图块图像的纹理含量;对细小纹理含量较少的平滑区域,采用保边降噪变分模型去除shearlet变换带来的人工伪影。为避免子图块边界带来的边界效应,该文基于中心仿射变换理论提出了一种新的图像延拓方法,有效提高了图像降噪的效果。试验结果表明,该文算法去噪后的峰值信噪比(peak signal to noise ratio,PSNR)平均值比全变分模型去噪算法大1 d B,该文算法去噪后的PSNR平均比曲线波去噪算法大2 d B。同基于Symmlet小波的Shearlet算法相比,该文算法处理后农田遥感图像中伪影减少,在高斯噪声标准偏差σ为10、20和30 d B时,峰值信噪比PSNR分别提高了13.99%、9.69%和7.75%。
蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,提出了基于自适应小波PDE的去噪算法。首先对蝗虫切片含噪图像进行sym5小波软阈值去噪,分解层数根据去噪后图像的PSNR(peak signal to noise ratio)值自适应地选择,阈值门限使用Birge-Massart处罚算法获取。然后在此去噪的基础上进行Perona-Malik(PM)模型去噪,迭代次数根据去噪后图像的PSNR值自适应地选择,梯度阈值根据图像自身的2范数获取。为了验证所提出算法的去噪性能,进行了与常用去噪算法的对比试验。试验结果表明:视觉上,采用本文算法去噪后的图像噪声点较少且边缘、纹理清晰;客观上,采用该文算法去噪后的图像PSNR值比使用维纳滤波高出2 d B左右,比使用中值滤波高出3 d B左右,比使用小波阈值去噪高出2 d B左右,比使用PM模型去噪高出1 d B左右,并且在结构相似性(structural similarity image measurement,SSIM)上采用该文算法去噪后的图像与原始图像的相似度最高。因此,将自适应小波PDE的算法应用于蝗虫切片去噪是可行的、有效的,为其后续处理提供了技术支持。