This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.
运用自主开发的弧齿锥齿轮设计分析系统建立齿轮的轮齿网格模型,并将模型数据变换后导入ANSYS软件中,经过装配和结构扩展进行轮齿的接触分析,最后得到了多齿对接触情况下,齿根弯曲应力的分布和及其变化规律.利用所建立的弧齿锥齿轮的轮齿模型比采用Matlab、CAD软件(如I-DEAS or Pro-Engineer)得到模型更为准确.