Acoustic fatigue life evaluation is essential for thermal protection struc- tures due to the severe thermo-acoustic load in service. A study on temperature- dependence of acoustic fatigue life for a C/SiC panel is presented in this paper. Effects of temperature on both the structural responses and the S-N curves are investigated. The Dirlik method is adopted to predict the fatigue life of a C/SiC panel at three different temperatures respectively. Significant differences are ob- served from the results of numerical simulations between the fatigue lives of the panel in the three cases. The temperature-dependence of acoustic fatigue life of a C/SiC panel is verified, and fatigue test of the material needs to be more atten- tively performed.
A hybrid numerical-experimental approach to identify elastic modulus of a textile composite panel using vibration test data is proposed and investi- gated. Homogenization method is adopted to predict the initial values of elastic parameters of the composite, and parameter identification is transformed to an optimization problem in which the objective function is the minimization of the discrepancies between the experimental and numerical modal data. Case study is conducted employing a woven fabric reinforced composite panel. Three parameters (Ell, E22, G12) with higher sensitivities are selected to be identified. It is shown that the elastic parameters can be accurately identified from experimental modal data.