Isothermal β heat treatments of Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si alloy were performed at the temperature of1040-1240 ℃ to examine the influence of heating conditions on grain growth of the alloy. The results show that the grain size increases with heating temperature and holding time increasing. Rapid β grain growth of the alloy takes place at the temperature of over 1140 ℃. The grain growth kinetics for the alloy follows the classical isothermal grain growth law.The growth time exponent(n) of 0.5651 and activation energy(Q) of 129.6 kJ mol-1 are determined. Finally, in order to determine the grain size under different heating conditions,the grain growth model of the alloy was established.
The hot deformation behavior of Ti 5.6Al-4.8Sn-2.0Zr-1.0Mo 0.35Si 0.85Nd alloy in β/quasi-β forging process was studied using isothermal compression tests over temperature range from 1040℃ to 1 100 ℃ and strain rates form 0. 001 s-1 to 70 s -1. The results show that the flow stress and mierostrueture are sensitive to thermomechanical parameters. The processing maps based on the dynamic materials model at strain of 0.3 and 0.7 were established. The optimum deformation thermomechanical parameters at a strain of 0.7 have two regions that exhibit the peak of power dissipation efficiency. One is the region of 1062-1100 ℃ and 10- 3 10-1.5 s -1 ; and another which represents dynamic recrystallization is 1040-1045 ℃ and 10-1.8 10- 0.5 s -1. The instable region is located where the strain rate is larger than 1 s 1 which corresponds to the mechanical instability.
Abstract: The dynamic spheroidization kinetics behavior of Ti-6.5Al-2Zr-1Mo-1V alloy with a lamellar initial microstructure was studied by isothermal hot compression tests in the temperature range of 750-950℃ and strain rates of 0.001-10 s^-1. The results show that the spheroidized fraction of alpha lamellae increases with the increase of temperature and the decrease of strain rate. The spheroidization kinetics curves predicted by JMAK equation agree well with experimental ones. The corresponding SEM and TEM observations indicate that the dynamic spheroidization process can be divided into two stages. The primary stage is boundary splitting formed by two competing mechanisms which are dynamic recrystallization and mechanical twin. In the second stage, the penetration of beta phase into the alpha/alpha grain boundaries is dominant, which is controlled in nature by diffusion of the chemical elements such as Al, Mo and V.