Empirical-likelihood-based inference for the parameters in a partially linear single-index model with randomly censored data is investigated. We introduce an estimated empirical likelihood for the parameters using a synthetic data approach and show that its limiting distribution is a mixture of central chi-squared distribution. To attack this difficulty we propose an adjusted empirical likelihood to achieve the standard X2-1imit. Furthermore, since the index is of norm 1, we use this constraint to reduce the dimension of parameters, which increases the accuracy of the confidence regions. A simulation study is carried out to compare its finite-sample properties with the existing method. An application to a real data set is illustrated.