A 2.4-m communication link operating at 3.9 THz based on a terahertz quantum cascade laser and a terahertz quantum well photodetector (THz QWP) are introduced. The lumped electrical models of THz QWP for small signals are presented. A discussion of the bandwidth limit of the detecting circuit is presented. Using direct on off-keying modulation and intensity detection, the transmission of digital video signal with a data rate of 2.5 Mb/s is demonstrated. Pseudo-random binary sequences are transmitted to investigate the bit-error rate (BER) at different rates. Result shows the error free transmission when the rate is below 5 Mb/s.
We demonstrate a wireless transmission link at 3.9 THz over a distance of 0.5 m by employing a terahertz (Hz) quantum-cascade laser (QCL) and a THz quantum-well photodetector (QWP). We make direct voltage modulation of the THz QCL and use a spectral-matched THz QWP to detect the modulated THz light from the laser. The small signal model and a direct voltage modulation scheme of the laser are presented. A square wave up to 30 MHz is added to the laser and detected by the THz detector. The bandwidth limit of the wireless link is also discussed.
Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz(THz) wireless communications. An error control coding scheme based on low density parity check(LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate(BER) performance of an on-off keying(OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications.