In conventional PET systems,the parallax error degrades image resolution and causes image distortion.To remedy this,a PET ring diameter has to be much larger than the required size of field of view(FOV),and therefore the cost goes up.Measurement of depth-of-interaction(DOI)information is effective to reduce the parallax error and improve the image quality.This study is aimed at developing a practical method to incorporate DOI information in PET sinogram generation and image reconstruction processes and evaluate its efficacy through Monte Carlo simulation.An animal PET system with 30-mm long LSO crystals and 2-mm DOI measurement accuracy was simulated and list-mode PET data were collected.A sinogram generation method was proposed to bin each coincidence event to the correct LOR location according to both incident crystal indices and DOI positions of the two annihilation photons.The sinograms were reconstructed with an iterative OSMAPEM(ordered subset maximum a posteriori expectation maximization)algorithm.Two phantoms(a rod source phantom and a Derenzo phantom)were simulated,and the benefits of DOI were investigated in terms of reconstructed source diameter(FWHM)and source positioning accuracy.The results demonstrate that the proposed method works well to incorporate DOI information in data processing,which not only overcomes the image distortion problem but also significantly improves image resolution and resolution uniformity and results in satisfactory image quality.
To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction.
In comparison with conventional radiotherapy techniques,12C beam therapy has its significant advantage in cancer treatment because the radiation dose are mostly concentrated near the Bragg peak region and damage to normal tissues along the beam path is thus greatly reduced.In-beam PET provides a way to monitor dose distribution inside human body since several kinds of positron-emitting nuclei are produced through the interaction between 12C beam and body matters.In this work,we study the quantitative relationship between the spatial location of the Bragg peak and the spatial distribution of positrons produced by positron-emitting nuclei.Monte Carlo package GATE is used to simulate the interactions between the incident 12C beam of different energies(337.5,270.0 and 195.0 MeV/u) and various target matters(water,muscle and spine bone).Several data post-processing operations are performed on the simulated positron-emitting nuclei distribution data to mimic the impacts of positron generation and finite spatial resolution of a typical PET imaging system.Simulation results are compared to published experimental data for verification.In all the simulation cases,we find that 10C and 11C are two dominant positron-emitting nuclei,and there exists a significant correlation between the spatial distributions of deposited energy and positrons.Therefore,we conclude that it is possible to determine the location of Bragg peak with 1 mm accuracy using current PET imaging systems by detecting the falling edge of the positron distribution map in depth direction.
WU Jing LIU Yaqiang MA Tianyu WEI Qingyang WANG Shi CHENG Jianping
An SPECT system dedicated to small animal imaging shall be of a millimeter spatial resolution or even better.This study was aimed at achieving 0.5-mm spatial resolution for a small animal SPECT system at low cost.It was developed from a single-head clinical SPECT scanner,with a seven-pinhole collimator and a four-degree-offreedom motion control stage.Several key techniques were developed,including high-resolution image reconstruction algorithm,high accuracy geometrical calibration method,and optimized system matrix derivation scheme.The system matrix was derived from Monte-Carlo simulation and de-noised by fitting each point spread function to a two dimensional Gaussian function.Experiments of point source and ultra micro hot rod phantom were conducted.With a spatial resolution of 0.5-0.6 mm,this system provides a practical way for low-cost high-resolution animal imaging on a clinic SPECT system.
DAI TiantianMATianyuLIU HuiCUI JunjianWEI QingyangLIU YaqiangWANG Shi
The position decoding accuracy and the spatial resolution of positron emission tomography detectors are greatly influenced by the performance of the two-dimensional position map,including the gain uniformity of photomultiplier tube (PMT),the baseline offset of the PMT signals and the accuracy of analogue to digital converter (ADC).In this work,a PMT-quadrant sharing detector was designed.Two data acquisition platforms are employed to conduct the influence factors on the two-dimensional position map performances,one was that the waveforms of the PMT signals were scanned by the sequence acquisition mode based on the oscilloscope of LeCroy waveRunner 204MXi-A,and another was a self-developed high speed ADC data acquisition module.Results show that the event decoding positions were concentrated on the PMT with higher gain,the position map was distorted at the baseline offset of signal,and the cross-line artifacts were caused by the insufficient ADC sampling bit for a larger size position map.All the parameters need be adjusted properly to stabilize a real system,and the flexible oscilloscope platform can be used to design the detector block and the other platform with high ADC accuracy.Likely,the electrical circuit with a proper ADC accuracy adjusts the PMT gains and baseline offsets.
WEI Qingyang WANG Shi Ma Tianyu MA Fei DAI Tiantian XU Tianpeng WU Zhaoxia JIN Yongjie LIU Yaqiang