A novel 3D metal-organic framework(MOF) with remarkable thermal stability,Ni(BIC)2.2·5H2O(JUC-86)(HBIC = 1-H-benzimidazole-5-carboxylic acid and JUC = Jilin University China),has been synthesized under hydrothermal conditions.It crystallizes in tetragonal symmetry with P43212 space group.The 3D structure consists of channels assembled from triple helices with a 4.5 × 4.52 aperture,which are formed by the parallel alignment of three infinite helical chains.The thermogravimetric analysis(TGA) and powder X-ray diffractions(PXRD) indicate JUC-86 with high thermal stability(up to 350 ℃).
The introduction of electrospinning technique in synthesis of supported microporous membranes and films opens bright pro- spects for mass production and practical applications. This novel and promising strategy has wide suitable range for various substrates with the possibility of large-area processing. We successfully synthesized several kinds of microporous materials into high quality membranes and films on different shaped supports by this method, such as zeolite NaA and pure-silica-zeolite Beta membranes on porous A1203 tube, zeolite NaY membrane on stainless steel net and a metal-organic framework Eu(BTC)(H20) DMF (JUC-32) film on porous silica disc. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used as characterization means. The results verified the effectiveness of this new approach in fabrication of membranes and films.
金属有机骨架(Metal organic framework,MOF)配位聚合物作为一类重要的多孔材料具有诸多独特的性能.新型MOF材料的结构表征与确定一直是该研究领域的关键性研究问题.由于单晶X-射线衍射等结构测定方法对晶体尺寸有一定限制,小尺寸MOF新材料的晶体结构确定一直是亟待解决的科学难题.透射电子显微分析方法(Transmission electron microscopy,TEM)作为纳米尺寸晶体材料最有力的结构表征手段之一,已经被逐渐应用于MOF新材料领域,展现出了巨大的应用潜力.本文以几个国内外有代表性的工作为例,浅析TEM在MOF材料领域的发展现状.
Hydrothermal synthesized nano zeolite A has been encapsulated with ethyl bridged periodic mesoporous organosilica(Et-PMO) shell tlirougli a simple modified Stober method and an organosilane-directed growth-induced etching strategy, the obtained yolk-shell structured A@Et-PMO nanocomposite(YS-A@Et-PMO) was further functionalized by the impregnation of copper ions, realizing the composite material with hierarchical porous and catalytic properties. The morphology and metal content of the Cu/A and Cu/YS-A@Et-PMO were fully characterized. As compared to tlie parent material, the composite Cu/YS-A@Et-PMO has an efficient adsorption and catalytic degradation performance on methylene blue(MB), the removal efficiency reached as high as 95% of 60 mg/L MB within 10 min. These novel structured porous composites may have great potential application for the removal of organic dye including waste effluents.
LI XiayuZENG ShangjingQU XuejianDAI JinyuLIU XiaofangWANG RunweiZHANG ZongtaoQIU Shilun
采用一步水热法合成了棒状NiCo_2O_4前驱体,并通过调节水热反应过程中碳源(葡萄糖)的加入量以及后续热处理条件(气氛、温度)得到了一系列不同的NiCo_2O_4及NiCo_2O_4@C产物,并对这些产物的结构、形貌及电化学储锂性能进行了测试.结果表明,适当的葡萄糖加入量(0.5 g)配合合理的煅烧条件(400℃,氮气气氛)可以获得倍率性能和循环稳定性兼具的NiCo_2O_4@C纳米复合材料.在100 m A/g的电流密度下,该材料的首次充/放电比容量为634.1/767.2 m A·h/g,对应的库仑效率为82.7%,5周后的放电比容量为650.1 m A·h/g,容量保持率为84.74%,且在300 m A/g的高电流密度下可逆比容量仍可保持在225.9m A·h/g.