您的位置: 专家智库 > >

国家自然科学基金(10901033)

作品数:4 被引量:1H指数:1
发文基金:国家自然科学基金上海市浦江人才计划项目更多>>
相关领域:理学天文地球更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇理学
  • 1篇天文地球

主题

  • 3篇METRIC...
  • 2篇PROPER...
  • 2篇PERMAN...
  • 1篇NONLIN...
  • 1篇OSIT
  • 1篇ROE
  • 1篇BSDE
  • 1篇DEC
  • 1篇DECOMP...
  • 1篇EXISTE...
  • 1篇INVARI...
  • 1篇LOCALL...
  • 1篇METRIC
  • 1篇REMARK...
  • 1篇LOCALI...
  • 1篇BSDES
  • 1篇ALGEBR...
  • 1篇DECOMP...

传媒

  • 2篇Chines...
  • 1篇Chines...
  • 1篇Journa...

年份

  • 1篇2014
  • 1篇2011
  • 2篇2010
4 条 记 录,以下是 1-4
排序方式:
Property A_(UB) of Metric Spaces under Decompositions of Finite Depth
2010年
Property AUB is the notion in metric geometry which has applications in higher index problems.In this paper,the permanence property of property AUB of metric spaces under large scale decompositions of finite depth is proved.
王显金杨军王勤
Existence and Uniqueness of the Nonlinear BSDEs with a Small Parameter under Locally Lipschitz Condition被引量:1
2010年
In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coefficient f is locally Lipschitz in y and z,the coefficient g 1 is locally Lipschitz in y,and the coefficient g 2 is uniformly Lipschitz in y and z.Let L N be the locally Lipschitz constant of the coefficients on the ball B(0,N) of R d × R d×r.We prove the existence and uniqueness of the solution when L N ~ √ log N and the parameter ε is small.
XIE Zhen-yunXIA Ning-mao
Remarks on the Operator Norm Localization Property
2011年
The author studies the metric spaces with operator norm localization property. It is proved that the operator norm localization property is coarsely invariant and is preserved under certain infinite union. In the case of finitely generated groups, the operator norm localization property is also preserved under the direct limits.
Xianjin WANG
Permanence of Metric Sparsification Property under Finite Decomposition Complexity
2014年
The notions of metric sparsification property and finite decomposition complexity are recently introduced in metric geometry to study the coarse Novikov conjecture and the stable Borel conjecture. In this paper, it is proved that a metric space X has finite decomposition complexity with respect to metric sparsification property if and only if X itself has metric sparsification property. As a consequence, the authors obtain an alternative proof of a very recent result by Guentner, Tessera and Yu that all countable linear groups have the metric sparsification property and hence the operator norm localization property.
Qin WANGWenjing WANGXianjin WANG
共1页<1>
聚类工具0