A field method for integrating the equations of motion for mechanico-electrical coupling dynamical systems is studied. Two examples in mechanico-electrical engineering are given to illustrate this method.
A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.
DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural model of DNA and other long-train molecules, is a useful tool in analysing the symmetrical properties and the stabilities of DNA. This paper studies the structural properties of a super-long elastic slender rod as a structural model of DNA by using Kirchhoff's analogue technique and presents the Noether symmetries of the model by using the method of infinitesimal transformation. Baaed on Kirchhoff's analogue it analyses the generalized Hamilton canonical equations. The infinitesimal transfornaationa with rcspect to the radial coordinnte, the gonarnlizod coordinates, and the Cluasi-momenta of 5he model are introduced. The Noether gymmetries and conserved qugntities of the model are obtained.
This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electricM systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange-Maxwell equations, the discrete analogue of Noether theorems for Lagrange Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results.
This paper investigates the Lie symmetries and Noether conserved quantities of discrete non-conservative mechanical systems. The variational principle of discrete mechanics, from which discrete motion equations of systems are deduced, is generalized to the case of including the time variational. The requirement for an invariant group transformation is defined to be the Lie symmetry and the criterion when the Noether conserved quantities may be obtained from Lie symmetries is also presented. An example is discussed for applications of the results.