The soft/hard composite patterned media have potential to be the next generation of magnetic recording, but the composing modes of soft and hard materials have not been investigated systematically. L10 FePt-based soft/hard composite patterned media with an anisotropic constant distribution are studied by micromagnetic simulation. Square arrays and hexagonal arrays with various pitch sizes are simulated for two composing types: the soft layer that encloses the hard dots and the soft layer that covers the whole surface. It is found that the soft material can reduce the switching fields of bits effectively for all models. Compared with the first type, the second type of models possess low switching fields, narrow switching field distributions, and high gain factors due to the introduction of inter-bit exchange coupling. Furthermore, the readout waveforms of the second type are not deteriorated by the inter-bit soft layers. Since the recording density of hexagonal arrays are higher than that of square arrays with the same center-to-center distances, the readout waveforrns of hexagonal arrays are a little worse, although other simulation results are similar for these two arrays.
Compositing soft and hard materials is a promising method to decrease the coercivity of L10 FePt, which is considered to be a suitable material for bit-patterned media. This paper reports the simulation of three models of FeCo/L10 FePt exchange-coupled composite particles for bit patterned media by the OOMMF micromagnetic simulation software: the enclosed model, the side-enclosed model, and the top-covered model. All of them have the same volumes of the soft and hard parts but different shapes. Simulation results show that the switching fields for the three models can be reduced to about 10 kOe (1 Oe = 79.5775 A/m) and the factor gain can be improved to 1.4 when the interface exchange coefficient has a proper value. Compared to the other models, the enclosed model has a wider range of interface exchange coefficient values, in which a low switching field and high gain can be obtained. The dependence of the switching fields on the angle of the applied field shows that none of the three models are easily affected by the stray field of a magnetic head.