In recent years, harmful algal blooms(HABs) have occurred frequently along the coast of China, and have been exhibiting succession from diatom- to dinofl agellate-dominated blooms. To examine the eff ects of dif ferent diatom and dinofl agellate HABs, the life history parameters of rotifers(B rachionus plicatilis Müller) were measured after exposure to dif ferent concentrations of HAB species. The HAB species examined included a diatom(S keletonema costatum) and four dinofl agellates( Prorocentrum donghaiense, Alexandrium catenella, Prorocentrum lima and Karlodinium venefi cum). Compared with the control treatment(CT), the diatom S. costatum showed no adverse impacts on rotifers. Exposure to dinofl agellates at densities equivalent to those measured in the fi eld resulted in a reduction in all the life history parameters measured. This included a reduction in: lifetime egg production(CT: 20.34 eggs/ind.) reduced to 10.11, 3.22, 4.17, 7.16 eggs/ind., life span(CT: 394.53 h) reduced to 261.11, 162.90, 203.67, 196 h, net reproductive rate(CT: 19.51/ind.) reduced to 3.01, 1.26, 3.53, 5.96/ind., fi nite rate of increase(CT: 1.47/d) reduced to 1.16, 1.03, 1.33, 1.38/d, and intrinsic rate of population increase(CT: 0.39/d) reduced to 0.15, 0.03, 0.28, 0.32/d, for the dinofl agellates P. donghaiense, A. catenella, P. lima and K. venefi cum, respectively. The results showed that the diatom S. costatum had no detrimental consequences on the reproduction and growth of B. plicatilis, however, the four dinofl agellates tested did show adverse ef fects. This suggests that dinofl agellate HABs may suppress microzooplankton, resulting in an increase in algal numbers.
DNA barcoding provides accurate stages. Single-gene-targeted metagenomic analysis identification of zooplankton species through all life based on DNA barcode databases can facilitate long- term monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitocbondrial cytochrome oxidase subunit 1 (coxl) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity〉96%) or genus level (similarity〈96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.
Macroalgal surfaces are prone to being attached by bacteria. Epibacterial community structures on marine macroalgae are host-specific but temporally and spatially variable. In this study, we investigated the structure of epibacterial communities on the surfaces of four red macroalgae, Gracilaria lemaneiformis, Gloiopeltisfurcata, Mazzaella sp. and Porphyra yezoensis, by analyzing the sequences of 16S rRNA gene libraries. Healthy individuals of all macroalgae species were collected in winter from a farm at Dalian, China. The results showed that the epibacterial communities were mainly dominated by ct-Proteobacteria, 7-Proteobacteria and Bacteroidetes. Deinococcus-Thermus, Spirochaetes and e-Proteobacteria were also found. The majority of cloned sequences shared the greatest similarity to those of culturable organisms. A large portion of sequences from the ct-Proteobacteria homed in Roseobacter clade, i.e., genera Ahrensia, Roseovarius, Litoreibacter, Octadecabacter, Thaiassobacter and Sulfitobacter, while members of Bacteroidetes mainly belonged to family Flavobacteriaceae. The cloned sequences could be separated into 66 OTUs at 0.01 distance value, and rare common OTUs were found among libraries. At genus level, Pseudoa#eromonas dominated Gr. lemaneiformis and GI. furcata libraries, accounting for 72.2% and 47.3%, respectively. Sulfitobacter dominated P. yezoensis library, accounting for 35.4%. A previously undefined cluster within Deinococcus-Thermus dominated Mazzaella sp. library, accounting for 24.6% of the all. These results indicated that a broad range of bacteria inhabited the surfaces of these macroalgae.
We present results on the effect of modified clay on cyst formation of Scrippsiella trochoidea in harmful algal bloom (HAB). Modified clay (in concentration of 0, 0.1, 0.5, and 1.0 g/L) were added to cultures, and observations were made on cysts of S. trochoidea under controlled laboratory conditions. Results indicate that the removal rate of algal cells reached 97.7% at the clay concentration of 1.0 g/L. The cyst formation rate increased from 4.6% to 24.6% when the concentration of clay was increased from 0 to 1.0 g/L. Two cyst metamorphs were observed: spinal calcareous cysts and smooth noncalcareous ones. The proportion of the spinal cysts decreased from 76.9% to 24.1% when clay concentration increased from 0 to 1.0 g/L. In addition, modified clay affected cyst germination. The germination rate decreased with the increases in the clay concentrations. Non-calcareous cysts had a lower germination rate with a longer germination time. We conclude that modified clay could depress algal cell multiplication and promote formation of temporal cysts of S. trochoidea, which may help in controlling HAB outbreaks.
We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 l^n2, less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km2, less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 krn2, large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km^2, large-scale httman disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.
Spacing characteristics of Langmuir circulation (LC) arc computed by large eddy simulation (LES) model under modest wind. LC is an organized vertical motion, evidenced as buoyant materials forming lines nearly parallel to the wind direction. The horizontal distribution of velocity computed by LES shows clear lines formed by LC. These lines grow and parallel to each other for a while, which we call the stable state, before they finally form Y-junctions. We computed spacing between every two parallel lines by averaging them under the stable state. Statistically, spacing results of 154 tests (seven wind speed cases of 22 test runs each) show high correlations between spacing and wind speed, as well as mixed layer depth. The relationship of spacing and wind is important for future LC parameterization of upper-ocean mixing.
Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.