The uncertainty principle is a crucial aspect of quantum mechanics.It has been shown that quantum entanglement as well as more general notions of correlations,such as quantum discord,can relax or tighten the entropic uncertainty relation in the presence of an ancillary system.We explored the behaviour of entropic uncertainty relations for system of two qubits—one of which subjects to several forms of independent quantum noise,in both Markovian and non-Markovian regimes.The uncertainties and their lower bounds,identified by the entropic uncertainty relations,increase under independent local unital Markovian noisy channels,but they may decrease under non-unital channels.The behaviour of the uncertainties(and lower bounds)exhibit periodical oscillations due to correlation dynamics under independent non-Markovian reservoirs.In addition,we compare different entropic uncertainty relations in several special cases and find that discord-tightened entropic uncertainty relations offer in general a better estimate of the uncertainties in play.
YAO ChunMeiCHEN ZhiHuaMA ZhiHaoSEVERINI SimoneSERAFINI Alessio