A new hexaketide acid esterified by the 17-hydroxyl group of 16,17-dihydroxycyclooctatin, namely 17-[16,17-dihydroxycyclooctatinyl]-hexaketide ester(1), a member of the group of rare bacterial diterpenes with a fused 5-8-5 ring system was isolated from strain Streptomyces sp. SR107. The structure was determined on the basis of its spectral data(~1H NMR, ^(13) C NMR, ~1H-~1H COSY, HSQC, HMBC, NOESY, IR and HR-ESI-MS). The antibacterial activity was also evaluated in this paper.
The highly potent antitumor agent ansamitocin P3 is a macrolactam isolated from Actinosynnema pretiosum ATCC 31565. A 120-kb DNA fragment was previously identified as the ansamitocin biosynthetic gene cluster, and contains genes for polyketide assembly, precursor synthesis, post-polyketide synthesis modification, and regulation. Within the biosynthetic gene cluster, asm8 encodes an 1117-amino-acid protein with a high degree of similarity to the large ATP-binding LuxR family-type regulators. In the current study, we determined that inactivation of asm8 by gene replacement in ATCC 31565 resulted in the complete loss of ansamitocin production, and that complementation with a cloned asm8 gene restored ansamitocin biosynthesis. Interestingly, the disruption of asm8 decreased the transcription of genes responsible for 3-amino-5-hydroxybenzoate (AHBA) formation, the starter unit required for ansamitocin biosynthesis. Subsequently, feeding of exogenous AHBA to the asm8 mutant restored ansamitocin biosynthesis, which showed that Asm8 is a specific positive regulator in AHBA biosynthesis. In addition, investigation of asm8 homologs identified two new ansamitocin producers, and inactivation of the asm8 homolog in A. pretiosum ATCC 31280 abolished ansamitocin production in this strain. Characterization of the positive regulator Asm8 and discovery of the two new ansamitocin producers paves the way for further improving production of this important antitumor agent.
PAN WenQinKANG QianJinWANG LeiBAI LinQuanDENG ZiXin