In this paper, we study the effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La(1-x)PrxFe11.4Si1.6Hy hydrides. The powder x-ray diffraction patterns of the La1-xPrxFe11.4Si1.6 and its hydrides show that each of the alloys is crystallized into the single phase of cubic Na Zn13-type structure. There are hydrogen-absorbing plateaus under 0.4938 MPa and 0.4882 MPa in the absorbing curves for the La0.8Pr0.2Fe11.4Si1.6 and La0.6Pr0.4Fe11.4Si1.6 compounds. The releasing processes lag behind the absorbing process, which is obviously different from the coincidence between absorbing and releasing curves of the La Fe11.4Si1.6 compound. The remnant hydrogen content for La0.6Pr0.4Fe11.4Si1.6 is significantly more than that for La0.8Pr0.2Fe11.4Si1.6 after hydrogen desorption, indicating that more substitutions of Pr for La are beneficial to retaining more hydrogen atoms in the alloys. The values of maximum magnetic entropy change are 14.91 J/kg·K and 17.995 J/kg·K for La0.8Pr0.2Fe11.4Si1.6H0.13 and La0.6Pr0.4Fe11.4Si1.6H0.87,respectively.
Bulk Mn_(1.2)Fe_(0.8)P_(0.76)Ge_(0.24) alloy was prepared by mechanical milling and subsequent spark plasma sintering technique.Effect of annealing on the structure and magneto-caloric properties of the alloy was investigated.XRD results show that both sintered and annealed samples possess a hexagonal Fe_2P-type crystal structure.After annealing,ferromagnetic impurity Fe_3Mn_4Ge_6,which exists in the sintered sample,was eliminated from the alloy.Furthermore,the lattice constants a and c change noticeably,leading to a decrease in c/a ratio,while the cell volume almost remains invariable.As a result,the Curie temperature of the alloy increases from 253 K to 298 K,but the maximum magnetic entropy change decreases from 37.5 to 11.7 J·kg·K^(-1) for 2 T magnetic field change.On the other hand,the thermal hysteresis of M-T curves around T_C upon heating and cooling is 14 and 8 K for the as-sintered and the annealed sample,respectively,showing evident change.
Xu, Hang Yue, Ming Zhao, Chuan Zhang, Dongtao Zhang, Jiuxing