292 chemical composition data and 82 isotopic composition data of gas samples collected from the Taibei Depression of the Turpan-Hami Basin, West China, were used in the study of their origin. Non-hydrocarbon gas is poor in most samples whereas abundant nitrogen in some samples is positively correlated with δ13C1. Although methane is the main constituent, higher molecular gaseous hydrocarbons, from ethane to pentane, are detected in most samples, in accordance with the distribution of oil reservoirs. The stable carbon isotope ratios of methane, eth-ane and propane are defined as δ13C1: -45.5‰ to -33.5‰, δ13C2: -30.2‰ to -10.5‰, and δ13C3: 27.6‰ to -11.2‰, respectively. According to the distribution of carbon isotope ratios, 2 families of gas can be grouped, most showing normal distribution of carbon isotopes, and others having obvious heavier carbon isotopes and being of abnormal distribution. Based on the isotopic composition, the disagreement between the relationship of △(δ13C1-δ13C2) and δ13C2 and that of △(δ13C1-δ13C2) and δ13C2, and the calculated Ro, there are oil-associated gas, coal-derived gas and mixture of them. Other samples with obviously heavier isotopic compositions from the Yanmuxi oilfield of the Taibei Depression have been degraded by organisms.
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of in- dividual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional envi- ronment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13C distribution. The δ13C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1%o for subgroups and 14%o for individual compounds. It can provide strong evidence for oil source correlation by combing the δ13C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative δI3Cg_Mp value, poor gam macerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 613C9-MP, value, abun dant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.