The propagation of hollow Gaussian beams in strongly nonlocal nonlinear media is studied in detail. Two analytical expressions are derived. For hollow Gaussian beams, the intensity distribution always evolves periodically. However the second-order moment beam width can keep invariant during propagation if the input power is equal to the critical power. The interaction of two hollow Gaussian beams and the vortical hollow Gaussian beams are also discussed. The vortical hollow Gaussian beams with an appropriate topological charge can keep their shapes invariant during propagation.