We explore the problems of degeneracy and discreteness in the standard cosmological model(ΛCDM). We use the Observational Hubble Data(OHD) and the type Ia supernovae(SNe Ia) data to study this issue. In order to describe the discreteness in fitting of data, we define a factor G to test the influence from each single data point and analyze the goodness of G. Our results indicate that a higher absolute value of G shows a better capability of distinguishing models, which means the parameters are restricted into smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor G is an effective way of model differentiation when using different models to fit the observational data.
We propose a consistency test for some recent X-ray gas mass fraction (fgas) measurements in galaxy clusters, using the cosmic distance-duality relation, Ttneory = DL(1 + Z)-2/DA, with luminosity distance (DL) data from the Union2 compilation of type Ia supernovae. We set Z/theory = 1, instead of assigning any red- shift parameterizations to it, and constrain the cosmological information preferred by fga8 data along with supernova observations. We adopt a new binning method in the reduction of the Union2 data, in order to minimize the statistical errors. Four data sets of X-ray gas mass fraction, which are reported by Allen et al. (two samples), LaRoque et al. and Ettori et al., are analyzed in detail in the context of two theoretical models of fgas. The results from the analysis of Alien et al.'s samples demonstrate the feasibility of our method. It is found that the preferred cosmology by LaRoque et al.'s sample is consistent with its reference cosmology within the 1σ confidence level. However, for Ettori et al.'s fgas sample, the inconsistency can reach more than a 3σ confidence level and this dataset shows special preference to an ΩA = 0 cosmology.