The pitting corrosion behaviors of 7A60 aluminum alloy in the retrogression and re-aging (RRA) temper were investigated by electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques, and the microstructure and the second phase content of the alloy were observed and determined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results show that there exist two different corrosion stages for 7A60 alloy in 3.5%NaCl solution, and the corrosion process can be detected by the appearance of EIS spectrum with two capacitive time constants and the wavelet fractal dimension D extracted from EN. SEM and EDS results also demonstrate that severe pitting corrosion in 7A60 alloy is mainly caused by electrochemical active MgZn2 particles, secondly by Al2MgCu and Mg2Si. Al7Cu2Fe particles make little contribution to the pitting corrosion of 7A60 alloy.
The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer(ICP-MS),and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy(SPM).The results reveal that the coating resistance,charge transfer resistance and noise resistance decrease with the prolongation of storage time.The iron and tin contents in cans increase with the storage time,while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months.The existence of deformation would enhance the corrosion process of tinplate cans.Finally,the corrosion mechanism of tinplate cans in coffee was proposed.
The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The results reveal that the uncoated tinplate shows a poor corrosion resistance and the corrosion type is detinning. During the initial stage of immersion, EIS spectrum consisted of two capacitance arcs with obvious time-constant dispersion effect, which was attributed to the two-dimensional and three-dimensional inhomogeneous distribution of the electrode surface. With the increase of immersion time, the capacitance arc of high frequency shrunk and degenerated, due to the corrosion of tin coating. The pore resistance of tin coating and the charger transfer resistance of substrate, which are determined from the electrochemical equivalent circuit, can be used as the indicators of tinplate corrosion process. The decrease of the pore resistance of tin coating indicates that the corrosion degree of tin layer becomes more severe, whereas the decrease of the charger transfer resistance of substrate implies that the corrosion degree of steel substrate also becomes more severe as the immersion time prolongs.
The corrosion behaviors of X65 steel in the artificial seawater at different hydrostatic pressures are investigated by potentiodynamic polarization measurements, electrochemical impedance spectroscopy measurements and weight loss measurements.The corroded morphologies and the corrosion products are also investigated by scanning electron microscopy, X-ray diffraction analysis and Raman analysis.The results show that the corrosion current increases as the hydrostatic pressure increases.The charge transfer resistance decreases as the hydrostatic pressure increases.The corrosion products are mainly composed of γ-FeOOH and Fe3O4 at the atmospheric pressure, while the main components are γ-FeOOH, Fe3O4, and γ-Fe2O3 at the high pressure.The hydrostatic pressure accelerates the corrosion of X65 steel due to its effect on the chemical and physical properties of corrosion products, including the promoted reduction of γ-FeOOH and the wider and deeper cracks on the corrosion products layer.
Qiu-Shi LiShun-Zhong LuoXu-Teng XingJing YuanXin LiuJi-Hui WangWen-Bin Hu