A one-step method for continuous large-scale synthesis of well-defined hollow titania spheres was established by feeding titanium tetrachloride mixed with ethanol vapor to a facile diffusion flame. A mixture of TiCl4 and C2H5OH vapor was transported at 100 m/s into a flame reactor and condensed into mesoscale droplets due to Joule-Thomson cooling and the entrainment of cool gases into the expanding high-speed jet. Hollow crystalline TiO2 spheres with good thermal stability were formed after the hydrolysis of TiCl4 in the H2/air flame at about 1500℃. Structural characterization indicates that the hollow spheres, with uniform diameter of 300 nm and shell thickness of 35 rim, consist of 20-30 nm TiO2 nanocrystallites. A formation mechanism of the hollow spheres was proposed, involving the competition between chemical reaction and diffusion during the flame process. The present study provides a new pathway for continuous and large-scale engineering of hollow nanomaterials.
Hollow A1203 nanospheres with well-defined structure and shape were successfully prepared via flame spray pyrolysis (FSP) in the presence of a surfactant as droplet stabilizer. The morphology and structure of the nanospheres were systematically characterized by transmission electron microscopy, scanning electron microscopy, and N2 sorption. A solution of hydrated aluminum nitrate, polyethylene glycol (PEG) and absolute ethanol was sprayed into a flame to transform droplets into particles after evaporation and surface nucleation, forming hollow AI203 nanospheres from aluminum nitrate decomposition. The surfactant was found effective in producing smaller droplets because of decreased surface tension and viscosity, while the combination of oxygen atoms on PEG chains and aluminum ions in solution reduced interfacial turbulence, leading to increased stability of the droplets.
The flame technology has been employed broadly for large-scale manufacture of carbon blacks, fumed silica, pigmentary titania, and also ceramic commodities such as SiO2, Ti02, and A1203. A deeper understanding of the process also made it possible for production of novel nanomaterials with high functionality--various novel nanomaterials such as nanorods, nanowires, nanotubes, nanocoils, and nanocomposites with core/shell, hollow and ball-in-shell structures, have been synthesized recently via gas combustion technology, while the mechanisms of the material formation were investigated based on the nucleation-growth and chemical engineering principles. Studies of the fluid flow and mass mixing, supported by principles of chemical reaction engineering, could provide knowledge for better understanding of the process, and thus make rational manipulation of the products possible.