基于矩量法(method of moment,MOM)及基尔霍夫近似(Kirchhoff approximation,KA)研究了分层粗糙面的电磁散射问题。首先,利用经典MOM求解了上层粗糙面的总场,包括直接入射场及由其激发的直接散射场。然后,将锥形入射波引入到传统KA中,利用其求解了分层粗糙面的透射场。数值计算并讨论了粗糙面高度起伏均方根、相关长度及分层粗糙面间距等参数对分层高斯粗糙面双站散射系数的影响。
Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by some numerical methods which will produce an enormous calculation amount. In order to overcome this shortcoming, the reciprocity theorem (RT) and the method of equivalent edge currents (MEC) are used in this paper. Due to the advantage of RT, the difficulty in computing the secondary scattered fields is reduced. Simultaneously, MEC, a high-frequency method with edge diffraction considered, is used to calculate the scattered field from the cone-cylinder target with a high accuracy and efficiency. The backscattered field and the polarization currents of the rough sea surface are evaluated by the Kirchhoff approximation (KA) method and physical optics (PO) method, respectively. The effects of the backscattering radar cross section (RCS) and the Doppler spectrum on the size of the target and the windspeed of the sea surface for different incident angles are analysed in detail.
This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.
Backscattered fields from one-dimensional time-varying Gerstners sea surface are calculated utilising the secondorder small slope approximation. It is well known that spectral properties of the backscattered echoes relate to the velocity of the small elementary scatterers on sea surface profiles. Therefore, modeling Doppler spectra from the ocean requires an accurate description of the sea surface motion. The profile of nonlinear Gerstners sea surface shows verticalskewness of sea waves, it is sharper at the crest and flatter at the trough than linear waves, and its maximum slope position is closer to the crest than to the trough. Furthermore, the horizontal component of the small elementary scatterers orbit velocity on the sea surface, which yields noticeable influence on Doppler spectra, can be obtained conveniently by Gerstners sea surface model. In this study the characteristics of Doppler spectra of backscattered fields from time-varying Gerstners sea surface are investigated and the dependences of the Doppler frequency and the Doppler bandwidth on the parameters, such as the wind speed, the radar frequency, the incident angle, etc. are discussed. It is shown that the Doppler bandwidth of microwave scattered fields from Gerstners sea surface is considerably broadened. For the case of high frequency backscattered fields, the values of the higher-order spectrum peaks are larger than those obtained by linear sea surface.
This paper studies the influence of wind parameters and fractal dimension from an improved two-dimensional sea fractal surface on the polarimetric scattering by using facet integration. A two-dimensional improved sea surface simulated is discretized into three matrices of sea surface facets including a height matrix and two slope matrices on orthogonal directions. Based on the Kirchhoff approximation, the polarimetric scattered field is derived in the Cartesian coordinate system by integration of three matrices mentioned above. Finally, the fully polarised radar cross section is numerically simulated and the dependence of the polarimetric scattering on the sea fractal surface, such as the wind speed, the wind direction, as well as the fractal dimension, is discussed in detail.
运用基于矩量法(method of moment,MoM)结合基尔霍夫近似(Kirchhoff approximation,KA)的混合算法研究一维带限Weierstrass分形分层介质粗糙面的电磁波透射问题.在混合算法中将上层粗糙面和下层粗糙面分别划分到MoM区域和KA区域,数值计算得到透射系数随透射波的散射角的变化,讨论粗糙面分维数、高度起伏均方根、底层介质介电常数、中间层介质介电常数和厚度、入射波频率对透射系数的影响,结果表明上层粗糙面参数对透射系数有显著影响,而下层粗糙面参数对透射系数影响较小.