Based on the concept of complementary media and theory of coordinate transformation, a novel kind of optical device, exhibiting the multiple performances of a complementary cloak and a transparent device, is proposed. Only the axial material parameter of the proposed device is spatially variant, and the transverse material parameters are constant. The multiple functions of the proposed device are validated by full wave simulations. In addition, the effects of loss and parameter perturbations on the performances of the device are also investigated. These results can be used in field of antenna protection and other electromagnetic field engineering.
An analytical solution is presented for the electromagnetic scattering from an infinite-length metallic carbon nanotube and a carbon nanotube bundle. The scattering field and scattering cross section are predicted using a modal technique based on a Bessel and Hankel function for the electric line source and a quantum conductance function for the carbon nanotube. For the particular case of an isolated armchair (10, 10) carbon nanotube, the scattered field predicted from this technique is in excellent agreement with the measured result. Furthermore, the analysis indicates that the scattering pattern of an isolated carbon nanotube differs from that of the carbon nanotube bundle of identical index (m, n) metallic carbon nanotubes.