The autoregressive moving average exogenous (ARMAX) model is commonly adopted for describing linear stochastic systems driven by colored noise. The model is a finite mixture with the ARMA component and external inputs. In this paper we focus on a parameter estimate of the ARMAX model. Classical modeling methods are usually based on the assumption that the driven noise in the moving average (MA) part has bounded variances, while in the model considered here the variances of noise may increase by a power of log n. The plant parameters are identified by the recursive stochastic gradient algorithm. The diminishing excitation technique and some results of martingale difference theory are adopted in order to prove the convergence of the identification. Finally, some simulations are given to show the reliability of the theoretical results.
InGaAs/AlGaAs MQW superluminescent LED(SLED) is fabricated by using pulsed anodic oxidation and molecular beam epitaxy(MBE).The power and spectral output characteristics of three kinds of device structures are investigated.An output power above 10 mW with FWHM of 18 nm is demonstrated at a current of 150 mA.
The least-squares (LS) algorithm has been used for system modeling for a long time. Without any excitation conditions, only the convergence rate of the common LS algorithm can be obtained. This paper analyzed the weighted least-squares (WLS) algorithm and described the good properties of the WLS algorithm. The WLS algorithm was then used for adaptive control of linear stochastic systems to show that the linear closed-loop system was globally stable and that the system identification was consistent. Compared to the past optimal adaptive controller, this controller does not impose restricted conditions on the coefficients of the system, such as knowing the first coefficient before the controller. Without any persistent excitation conditions, the analysis shows that, with the regulation of the adaptive control, the closed-loop system was globally stable and the adaptive controller converged to the one-step-ahead optimal controller in some sense.