Flow corridors are a new class of trajectory-based airspace which derives from the next generation air transportation system concept of operations. Reducing the airspace complexity and increasing the capacity are the main purposes of the en-route corridor. This paper analyzes the collision risk-capacity tradeoff using a combined discrete-continuous simulation method. A basic two-dimensional en-route flow corridor with performance rules is designed as the operational envi- ronment. A second-order system is established by combining the point mass model and the propor- tional derivative controller together to simulate the self-separation operations of the aircrafts in the corridor and the operation performance parameters from the User Manual for the Base of Aircraft Data are used in this research in order to improve the reliability. Simulation results indicate that the aircrafts can self-separate from each other efficiently by adjusting their velocities, and rationally set- ting the values of some variables can improve the rate and stability of the corridor with low risks of loss of separation.
为研究多机场终端区交通流微观时空特性与演变规律,考虑终端区内单股、汇聚和交叉交通流具有基于目标点运行的基本特征,依据先到先服务原则,利用刺激-反射跟驰理论,建立了空中交通流局域排序模型、跟驰模型和机动模型.在此基础上,采用多智能体仿真工具Net Logo,构建了多机场终端区交通流仿真平台,仿真分析了进场交通流特征参数之间的关系和灵敏性,以及进离场交通流之间的相互影响.研究结果表明:多机场终端区进场交通流存在明显的相变与迟滞特征,形成自由相、畅行相、伪拥塞相和同步拥塞相等基本相态;流量与速度密度乘积之间存在线性关系;管制间隔对交通流的影响较大且存在最优管制间隔,进场交叉点的最优管制间隔为8 km.