Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach modules over a unital Banach algebra.
We generalize the D-gap function developed in the literature for variational inequalities to a general equilibrium problem (EP). Through the D-gap function, the equilibrium problem is cast as an unconstrained minimization problem. We give conditions under which any stationary point of the D-gap function is a solution of EP and conditions under which it provides a global error bound for EP. Finally, these results are applied to box-constrained EP and then weaker conditions are established to obtain the desired results for box-constrained EP.