Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.
In the paper,an inf-sup stabilized finite element method by multiscale functions for the Stokes equations is discussed.The key idea is to use a PetrovGalerkin approach based on the enrichment of the standard polynomial space for the velocity component with multiscale functions.The inf-sup condition for P_(1)-P_(0)triangular element(or Q_(1)-P_(0)quadrilateral element)is established.The optimal error estimates of the stabilized finite element method for the Stokes equations are obtained.
We consider a new subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations by using lowest equal-order pair of finite elements. The scheme stabilizes convection dominated problems and ameliorates the restrictive inf-sup compatibility stability. It has some attractive fea- tures including parameter free for the pressure stabilized term and calculations required for higher order derivatives. Moreover, it requires only the solutions of the linear system arising from an Oseen problem per time step and has second order temporal accuracy. The method achieves optimal accuracy with respect to solution regularity.