Using real analysis data of 1°×1° resolution of the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),the nondivergent wind component and irrotational wind component obtained by the harmonic-cosine(H-C) method,and the wind structure of Typhoon Fung-Wong (coded 0808 in China) in 2008 was analyzed. The results indicated that the irrotational component was advantageous over the total wind in reflecting both the changes in convergent height and the asymmetrical convergence of Fung-Wong. In Fung-Wong,the nondivergent component was larger than the irrotational component,but the latter was much more variable than the former,which was obtained only from the wind partition method. Further analyses on the irrotational component demonstrated that the location of the convergent center at lower levels was almost the same as the divergent center during the development of Fung-Wong,and its convergent level was high in its life cycle,with the most highest up to 400 hPa when it became stronger. After the typhoon landed in the provinces of Taiwan and Fujian,respectively,its convergent center at lower levels was slowly detached from the divergent center at high levels and the convergent height was also depressed from high levels to lower levels. Gradually,this weakened the intensity of Fung-Wong. This kind of weakening was slow and Fung-Wong maintained its circulation for a long time over land because of its very thick convergent height. Analyses on wind partitioning provided one possible explanation to why Fung-Wong stayed for a long time after it landed. Furthermore,the asymmetric vertical ascending motion was induced by the asymmetric convergence at lower levels. In general,when typhoons (such as Fung-Wong) land,the rainfall region coincides with that of the convergence region (indicated by the irrotational component at lower layers). This means that the possible rainfall regions may be diagnosed from the convergent area of the irrotational component. For an observational experi
The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds.
The momentum advection vorticity equation in the form of cross multiplication is introduced, in which the divergence term in the classic vorticity equation does not appear explicitly. This equation includes the rotation effect of the horizontal wind advection, which are not explicitly included in the classic vortieity equation. The vorticity and its tendency of Typhoon Fung-Wong (0808) that occurred in July 2008 are analyzed. The computed results show that the rotation effect of the advection of the horizontal wind is a leading factor in determining the change of vertical vorticity for Fung-Wong during its life cycle, especially in the period leading up to landfall. The advection term represents the tendency variation of the vertical vortieity, and the positive-value region of the vertical vorticity tendency is almost in accord with the track of Fung-Wong, which may be taken as a factor to locate the key observational region of Fung-Wong. The equation provides a supplementary diagnostic tool for the systems related with strong advection of horizontal wind.
A tropical cyclone is a kind of violent weather system that takes place in warmer tropical oceans and spins rapidly around its center and at the same time moves along surrounding flows. It is generally recognized that the large-scale circulation plays a major role in determining the movement of tropical cyclones and the effects of steering flows are the highest priority in the forecasting of tropical cyclone motion and track. This article adopts a new method to derive the steering flow and select a typical swerving track case (typhoon Dan, coded 9914) to illustrate the validity of the method. The general approach is to modify the vorticity, geostropical vorticity and divergence, investigate the change in the non-divergent stream function, geoptential and velocity potential, respectively, and compute a modified velocity field to determine the steering flow. Unlike other methods in regular use such as weighted average of wind fields or geopoential height, this method has the least adverse effects on the environmental field and could derive a proper steering flow which fits well with storm motion. Combined with other internal and external forcings, this method could have wide application in the prediction of tropical cyclone track.
In this study,we derived atmospheric profiles of temperature,moisture,and ozone,along with surface emissivity,skin temperature,and surface pressure,from infrared-sounder radiances under clear sky (cloudless) condition.Clouds were detected objectively using the Atmospheric Infrared Sounder under a relatively low spatial resolution and cloud-mask information from the Moderate Resolution Imaging Spectroradiometer under a high horizontal resolution;this detection was conducted using space matching.Newton’s nonlinear physical iterative solution technique is applied to the radiative transfer equation (RTE) to retrieve temperature profiles,relative humidity profiles,and surface variables simultaneously.This technique is carried out by using the results of an eigenvector regression retrieval as the background profile and using corresponding iterative forms for the weighting functions of temperature and water-vapor mixing ratio.The iterative forms are obtained by applying the variational principle to the RTE.We also compared the retrievals obtained with different types of observations.The results show that the retrieved atmospheric sounding profile has great superiority over other observations by accuracy and resolution.Retrieved profiles can be used to improve the initial conditions of numerical models and used in areas where conventional observations are sparse,such as plateaus,deserts,and seas.