An optimal power distribution analysis for an all-optical sampling orthagonal frequency division multiplexing(OFDM) scheme with multiple modulation formats including diferential phase shift keyed(DPSK), diferential quadrature phase shift keyed(DQPSK), and non-return-to-zero(NRZ) is proposed. The noise tolerances of different modulation formats are analyzed, and the optimal input power ratio between phase and intensity modulation formats for the best overall receiving performance is investigated under unchanged total input power. Moreover, this scheme can seamlessly coexist with the traditional WDM channel.
In this paper, a new millimeter-wave (mm-wave) wavelength division multiplexing (WDM) system based on radio-over- fiber (ROF) technology is proposed. In this approach a multi-wavelength light source is obtained by supercontinuum (SC) technique, and mm-wave signals are obtained by using optical heterodyning method. We experimentally demonstrate the generation of optical carriers for 6-WDM channels, obtain 40 GHz ram-wave signals by employing optical heterodyne technique, and successfully achieve low error rate transmission of 2.5 Gbit/s in WDM channels over a distance of 25 km in a G.652 fiber. The experimental results verify that the proposed solution is feasible and cost effective.
Applicability of the angular properties of scatter elements as a tool to achieve improved slow light per- formance with small group velocity dispersion and large bandwidth in photonic crystal waveguides is investigated. A polyatomic photonic crystal waveguide, including two scatter elements with different geo- metrical shapes in each primitive cell, is proposed to investigate the feasibility of our method. Numerical results show that a versatile control of the dispersion relation of slow light modes, with large normalized delay-bandwidth products ranging from 0.2085 to 0.3394, can be obtained using a unique geometrical pa- rameter.