目的探讨压配型髋臼假体置换术后骨性髋臼皮质骨和松质骨的骨小梁应力分布模式及松质骨是否参与承载负荷。方法应用显微CT扫描骨性髋臼的骨小梁,建立骨性髋臼的三维微有限元模型。计算压配型髋臼假体置换后骨性髋臼骨小梁的应力和应变,分析骨性髋臼骨小梁应力、应变的生物力学特征。结果当压配型金属髋臼假体植入髋臼后,骨性髋臼外表面的最高应力区位于耻骨区,最高应力为1.389 MPa。在臼顶区,高应力区的面积最大。在骨性髋臼内部的松质骨,高应力区主要分布在臼顶区,分布区域相对较广。当施加1.372 k N载荷后,骨性髋臼外表面面积较大高应力区位于臼顶区域和耻骨区域,臼顶区的最高拉应力为0.604 MPa,耻骨区骨小梁出现微损伤。在骨性髋臼内部的松质骨,面积较大高应力区主要分布在臼顶区和耻骨区。结论高应力区沿着骨性髋臼外表面呈现3点式环形分布,集中分布于耻骨区、坐骨区、臼顶区;髋臼内部松质骨骨小梁通过形变导致应力分布更加均匀。髋臼松质骨具有承受载荷功能。
Background With advance of age, alterations in bone quality, quantity and microarchitecture render osteoporotic trabecular bone become more sensitive to local failure. The aims of the present study were to clarify the extent to which the distribution of tissue-level stresses and strains was affected by structural changes and the extent to which osteoporotic acetabular trabecular bone was damaged at small strains. Methods Using a DAWING 4000A supercomputer, nonlinear micro-finite element (μFE) analyses were performed to calculate the tissue-level strains and stresses for each element in the trabecular bone of one osteoporotic acetabulum at small strains to quantify the tissue-level damage accumulation and mechanical properties. Results In contour plots of the tissue, maximum principal logarithmic strains, high tissue-level strains, both compressive and tensile, were observed in the osteoporotic trabecular bone at small apparent strains from 0.2% to 0.5% strain. The compressive apparent stress-strain curve showed typical nonlinear behavior and tangent modulus reduction with increasing strains. The microdamage curve suggested that microdamage began at 0.2% apparent strain in the osteoporotic trabecular bone and increased sharply, although very few microfractures occurred. The quartiles of the maximum principal logarithmic strains, minimum principal logarithmic strains and Von Mises stresses increased nonlinearly. For the inter-quartile range of the Von Mises stresses, a leap occurred at small strains ranging from 0.2% to 0.3% while microdamage commenced. Conclusions Extensive microdamage was primarily responsible for the large loss in apparent mechanical properties that occurred in the trabecular bone of the osteoporotic acetabulum at small strains. With increasing apparent strains, continuous nonlinear increments of tissue-level strains and stresses resulted in microdamage that propagated throughout the specimen with very few microfractures. Chin Med J 2009; 122(17):2041-204 7