The plasma density feedback control system(PDFCS) has been established on the Joint Texas Experimental Tokamak(J-TEXT) for meeting the need for an accurate plasma density in physical experiments.It consists of a density measurement subsystem,a feedback control subsystem and a gas puffing subsystem.According to the characteristic of the gas puffing system,a voltage amplitude control mode has been applied in the feedback control strategy,which is accomplished by the proportion,integral and differential(PID) controller.In this system,the quantity calibration of gas injection,adjusted responding to the change of the density signal,has been carried out.Some experimental results are shown and discussed.
A tangentially visible imaging system has been developed on the Experimental Advanced Superconducting Tokamak(EAST) to record the full cross-section plasma visible radiation with speed up to 7500 frames per second at full resolution or much faster for a limited number of pixels.The edge localized mode(ELM) filaments during ELM eruptions in H-modes are captured.Using these pictures,the current in the filament is estimated.
During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared (IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperature of the lower divertor target plate (LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX;this is important for future work on related physical processes and heat flux control.