The northeastern Tibetan Plateau is located at the convergence of the Asian winter and summer monsoons and westerlies; thus, this area has witnessed historic climate changes.The Xunhua basin is an intermontane basin on the northeastern margin of the Tibetan Plateau.The basin contains more than 2000 m of Cenozoic fluvial–lacustrine sediments, recording a long history of climate and environmental changes.We collected the mid-Miocene sediments from the Xunhua basin and used palynological methods to discuss the relationship between aridification in the interior of Asia, global cooling, and uplift of the Tibetan Plateau.Based on the palynological analysis of the Xigou section, Xunhua basin, the palynological diagram is subdivided into three pollen zones and past vegetation and climate are reconstructed.Zone I, Ephedripites–Nitraridites–Chenopodipollis–Quercoidites(14.0–12.5 Ma), represents mixed shrub–steppe vegetation with a dry and cold climate.In zone II, Pinaceae–Betulaepollenites–Ephedripites–Chenopodipollis–Graminidites(12.5–8.0 Ma), the vegetation and climate conditions improved, even though the vegetation was still dominated by shrub–steppe taxa.Zone III, Ephedripites–Nitrariadites–Chenopodipollis(8.0–5.0 Ma), represents desert steppe vegetation with drier and colder climate.The palynological records suggest that shrub–steppe dominated the whole Xigou section and the content gradually increased, implying a protracted aridification process, although there was an obvious climate improvement during 12.5–8.0 Ma.The aridification in the Xunhua basin and surrounding mountains during 14.0–12.5 Ma was probably related to global cooling induced by the rapid expansion of the East Antarctic ice-sheets and the relatively higher evaporation rate.During the 12.5–8.0 Ma period, although topographic changes(uplift of Jishi Shan) decreased precipitation and strengthened aridification in the Xunhua basin on leeward slopes, the improved vegetation and climate conditions were
The Quaternary sediments in the Yangtze delta are loose and lack precise stratification marks in the lithology. Moreover, due to the limitations of dating methods, it is difficult for Quaternary cores to deliver accurate age constraints. Thus, it is a challenge to establish the Quaternary stratigraphic framework. Gravity core LZK1 was drilled on Hengsha Island, Shanghai, in the Yangtze delta, in 2012. The core was terminated at 403.83 m below the local land surface, the uppermost 291.2 m comprising a thick sequence of Quaternary sediments. This study investigated the stratigraphic subdivision and paleoenvironmental change of the Quaternary sediments. From bottom to top, the Quaternary stratigraphic sequence can be subdivided into the lower Pleistocene Anting Formation, Middle Pleistocene Jiading Formation, Upper Pleistocene Chuansha Formation and Nanhui Formation, Holocene Loutang Formation, Shanghai Formation, and Rudong Formation. According to this study, the Hengsha Island area was dominated by a freshwater lacustrine environment during the early Pleistocene, an alternation of shallow lake and shore lake environment during the Middle Pleistocene, a delta plain to lagoonal environment during the early Upper Pleistocene, a fluvial channel to floodplain environment from the LGM(Last Glacial Maximum) to the end of the Upper Pleistocene, and a delta environment during the Holocene.
KE XueXIE JianleiZHANG ZongyanZOU YaruiWANG Guoquan
Aridification of central Asia during late Oligocene and Early Miocene has been documented by numerous eolian records from the North Pacific and central Asia. However, direct evidence of aridity from the interior of the arid zone is still rather scarce. To better reconstruct the climate history in central Asia during the late Oligocene, we have analyzed ostracod assemblages and gypsum content in the sediments from the lacustrine Jingou River section in the northern Tianshan Mountains. Our results show that the cold water species Candona cf. Neglecta and Pseudocandona albicans replaced the warm water species Ilyocypris bradyi and Ilyocypris sp. to become the dominant species at 23.8 Ma, indicating significant cooling in central Asia at that time. At the same time, a substantial increase in gypsum content indicates the intensification of central Asian drying. The synchronous cooling and drying approximately coincided with the Oi2b.1 and/or Mi1 events, implying a causal linkage between late Oligocene global cooling and central Asian aridity.
The timing of onset of deposition of the Lulehe Formation is a significant factor in understanding the genesis of the Qaidam basin and the evolution of the Tibetan Plateau. Here, we describe a detailed magnetostratigraphic and magnetic fabric study of the middle and lower parts of the Lulehe Formation. A total of 234 samples were collected from 117 sites throughout a thickness of almost 460 m of fluvial and lacustrine deposits at the Xitieshan section in the northeastern Qaidam basin. Out of these sites, 94 sites yielded well-defined characteristic remanent magnetization components by stepwise thermal demagnetization and were used to establish the magnetostratigraphy of the studied section. Based on correlation with the geomagnetic polarity timescale, the studied section spans the period from 53.8 Ma to 50.7 Ma. Our results show a three-fold decrease in sedimentation rates as well as marked change in facies from braided river to delta and shore-shallow lake around 52.6 Ma, which suggests tectonic uplift of the northeastern Qaidam basin margin ridge was rapid at the onset of formation of the Qaidam basin and subsequently weakened after 52.6 Ma. The anisotropy of magnetic susceptibility results indicate that tectonic compression stress had reached the northeastern Tibetan Plateau by the early stages of Indo-Eurasian plate collision and that the direction of stress in the study area was NE-SW. Furthermore, a weakening of tectonic compression stress around 52.6 Ma is consistent with sedimentary records. The age of initial deposition of the Qaidam basin (around 53.8 Ma) was almost synchronous with that of the Qiangtang, Hoh Xil, Xining, and Lanzhou basins, which implies that stress was transferred rapidly through the Tibetan Plateau during or immediately after the onset of Indo-Eurasian collision.
KE XueJI JunliangZHANG KexinKOU XiaohuSONG BowenWANG Chaowen