This study demonstrated that a Ru-Ni bimetallic core-shell catalyst(0.6%Ru-Ni)@Si O2with a proper surface Ru concentration is superior in achieving better catalytic activity and tunable H2/CO ratio at a comparatively lower reaction temperature(700℃).Compared to the impregnation method,the hydrothermal approach leads to a highly uniform Ru distribution throughout the core particles.Uniform Ru distribution would result in a proper surface Ru concentration as well as more direct Ru-Ni interaction,accounting for better catalyst performance.Enriched surface Ru species hinders surface carbon deposition,but also declines overall activity and H2/CO ratio,meanwhile likely enhances Ni oxidation to certain degree under the applied reaction conditions.Over the current(m%Ru-Ni)@Si O2catalyst,the formation of fibrous carbon species is suppressed,which accounts for good stability of catalyst within a TOS of 10 h.
Yixuan DouYijun PangLingli GuYifan DingWu JiangXinzhen FengWeijie JiChak-Tong Au