8-Oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxy- gen species, gives rise to a G·C→T·A transversion during replication and thereby must be repaired. The effects of explicit and implicit solvent molecules on the hydrolysis cleavage of N-Glycosidic bond in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) have been systematically clarified in the present work based upon two types of computational models. Detailed potential energy surface (PES) scans and full unconstraint optimizations for all the representative points on PESs were carried out at the B3LYP/6-31+G(d) level of theory. The effect of implicit solvent was tested by single-point calculation at the SCRF/IEF-PCM model. The results illustrate that the direct hydrolysis model involving one explicit water molecule can’t provide a complete depiction of the hydrolysis process of 8-oxo-dG, attributed to the insufficiency of nucleophile activation and leaving group stabilization. The expansion hydrolysis model involving four explicit water molecules, however, facilitates discrete proton transfer and therefore produces smooth reaction surfaces for both the dissociative (SN1) and concerted (SN2) pathways. The presence of the implicit solvent substantially lowers all activation energies and the SN1 process is more favorable than the SN2 process. The data and insights present here agree well with the experimental results and have given out a baseline for the enzymatic deglycosylation reaction of 8-oxo-dG.
采用从头算(HF与MP2)和密度泛函理论(DFT)方法,在3-21G 和6-31+G?水平上研究了尼克酰胺核苷(NR)的构象.分别探讨了在气相及液相(水和氯仿)中 NR 分子和一水合物异构体的相对稳定性,分析了溶剂分子的参与对NR异构体的相对稳定性和几何结构参数的影响.结果表明:孤立的NR分子在气相中存在36种稳定构象,其中最稳定的为南式构象NR-S,而最稳定的北式构象为NR-K’,能量比前者高出10.6 kJ/mol (ΔG298K).NR 分子中酰胺基团优势构象为反式,ω,P 或γ参数的改变可以为 NR 分子提供大约8.4~23.7 kJ/mol(ΔG298K )稳定化能.不管是南式还是北式褶皱,最稳定 NR 分子构象中都存在多根分子内氢键,且5’-OH 基团都为顺式构象(γ≈-63°).溶剂效应使一部分NR分子构象相对稳定性降低,而一部分则升高,改变了NR分子各构象的相对稳定性顺序.水分子的加入与酰胺基团结合形成氢键,对NR分子的构型影响较大,而与糖环上羟基结合形成氢键,则影响较小.