A novel ultrafast-convert hybrid pulse variable polarity gas tungsten arc welding process (HPVP-GTAW) is developed. High frequency pulse square-wave current which has a frequency of more than 20 kHz is exactly integrated in the positive polarity current duration. The effects of pulse current parameters on arc characteristics and weld penetration have been studied during the HPVP-GTAW process using Al-5. 8 Mg alloy plates. The arc characteristics studied by arc voltage and its profile, weld penetration noted by the ratio of weld depth to width have been found to be influenced significantly by the pulse current. The experimental results show that the HPVP-GTA W process can improve the arc profile predominantly and obtain the higher weld penetration with lower heat input. The observation may help in understanding the weld characteristics with respect to variation in the pulse current parameters which may be beneficial in using the novel HPVP-GTAW process to produce the better weld quality of aluminum alloy plates.
AA 2219-0 Al-Cu alloy single bead welds were obtained by hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) process with pulse frequency varying from 25 kHz to 70 kHz. Weld hardness characteristics which mainly depicted by microhardness and its gradient were investigated systematically. The results show that pulse frequency has a great effect on the hardness characteristics. The weld zone microhardness and its gradient with different pulse frequency present an evident fluctuant trend. The fluctuation of gradient is slight, illustrating that the mierostructure is uniform with pulse frequcncy varied from 35 kHz to 60 kHz. The fusion zone microhardness and its gradient foUow the similar trends but fluetuate greatly. Maximum value of gradient appears around the fusion boundary due to the coarse and non- uniform microstrueture. The maximum gradient at 60 kHz is only 25.5 % of that at 45 kHz. According to the study, the best hardness characteristics are achieved at 60 kHz frequency.
Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse current frequency 40 kHz on weld bead geometry, microstrueture and microhardness were analyzed. Experimental results indicate that, compared to that of the conventional VP-GTAW process, the weld depth and ratio of weld depth to width are improved significantly by the variable polarity frequency in the HPVP-GTAW process, which the ratio of weld depth to width is improved by 36% at equal variable polarity frequency of 100 Hz, and improved by 55% with that of 200 Hz. Weld microstructure and microhardness distribution are changed obviously with the increase of variable polarity frequency. In the conventional VP-GTA W process, the grains in weld central zone are coarser, and the microhardness in weld central zone and fusion zone is about 95 HV and the lowest 82 HV, respectively. The microhardness is enhanced to a certain extent both in the weld central zone and fusion zone with the variation of variable polarity frequency in the HPVP-GTAW process due to the refinement and uniformity of weld microstructure. With the variable polarity frequency of 600 Hz, the microhardness in weld central zone and fusion zone reaches nearly 110 HV and 97 HV, respectively.