AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with a high-mobility GaN thin layer as a channel are grown on high resistive 6H-SiC substrates by metalorganic chemical vapor deposition. The HEMT structure exhibits a typical two-dimensional electron gas (2DEG) mobility of 1944cm^2/(V·s) at room temperature and 11588cm^2/(V ·s) at 80K with almost equal 2DEG concentrations of about 1.03 × 10^13 cm^-2. High crystal quality of the HEMT structures is confirmed by triple-crystal X-ray diffraction analysis. Atomic force microscopy measurements reveal a smooth AlGaN surface with a root-mean-square roughness of 0.27nm for a scan area of 10μm × 10μm. HEMT devices with 0.8μm gate length and 1.2mm gate width are fabricated using the structures. A maximum drain current density of 957mA/mm and an extrinsic transconductance of 267mS/mm are obtained.
AlGaN/GaN high electron mobility transistor (HEMT) materials are grown by RF plasma-assisted molecular beam epitaxy (RF-MBE) and HEMT devices are fabricated and characterized.The HEMT materials have a mobility of 1035cm2/(V·s) at sheet electron concentration of 1.0×10 13cm -2at room temperature.For the devices fabricated using the materials,a maximum saturation drain-current density of 925mA/mm and a peak extrinsic transconductance of 186mS/mm are obtained on devices with gate length and width of 1μm and 80μm respectively.The f t,unit-current-gain frequency of the devices,is about 18.8GHz.
Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.