Existing cotton EST-SSR markers are mostly derived from Gossypium arboreum and Gossypium hir-sutum, but EST-SSR markers from Gossypium barbadense are scarce. One hundred and nineteen EST-SSRs were developed based on 98 unique ESTs from a cDNA library constructed in our laboratory using developing fibers from G. barbadense cv. Pima3-79. Among the SSRs, trinucleotide AAG appeared at a high frequency of 11.76%. 36 accessions (consisting of 13 diploids of the A genome, 11 diploids of the D genome and 12 allotetraploids of the AD genome) were employed to test new EST-SSRs. 76 EST-SSRs were successfully amplified, and 313 polymorphic fragments were yielded, with an average of 4.11 fragments per primer pair. The PIC ranged from 0.17 to 0.95 with an average of 0.53. Based on Jaccard’s genetic similarity coefficient, these 36 accessions were clustered into three groups. 21 EST-SSRs exhibited polymorphisms in BC1 population ((Emian22 × Pima3-79) × Emian22), 24 polymor- phic loci were generated, while 22 of the 24 polymorphic loci were integrated with our interspecific BC1 backbone genetic linkage map, and anchored in 12 chromosomes. This study effectively proved that EST-SSRs from G. barbadense are valuable for genetic diversity analysis and genetic mapping.
ZHANG YanXin LIN ZhongXu LI Wu TU LiLi NIE YiChun ZHANG XianLong
The aim of this study was to clone CAP (adenylyl cyclase-associated protein) gene from Gossypium arboreum L. and develop a platform for expressing and purifying CAP protein, which is a base for the construction and function researches of CAP. In this work, a CAP homolog from cotton (DPL971) ovule was identified and cloned. And the cDNA sequence consisted of an open reading frame of 1 416 nucleotides encoding a protein of 471 amino acid residues with a calculated molecular weight of 50.6 kDa. To gain insight on the CAP role in cotton fiber development, the cloned CAP cDNA was expressed. A significant higher yield pure protein was obtained with the chromatographic method. Further experiments showed that the purified protein can bind with the actin in vitro indicating that the recombinant cotton CAP is functional. The procedure described here produced high yield pure protein through one chromatographic step, suitable for further structure-function studies.
WANG Sheng ZHAO Guo-hong JIA Yin-hua DU Xiong-ming