Morphology,distribution and crystal structures of age-precipitated particles in practical Cu-bearing steels with ultra-low carbon were studied by high resolution electron microscopy(HREM).The age-precipitation behavior was explored when poly-microalloying elements Cu,Nb,Cr,Mo and Ni were used and ε-Cu particles coexisted with carbides(carbonitrides) in steels.The fine dispersed ε-Cu particles and carbides of microalloying element Nb,Cr,Mo being about 10 nm only in size were observed in peak aging specimens and over-aging specimens.The twin structures and stacking faults in the particles and the transient structures formed in the early stage of the particle precipitation were also observed.The crystal structure of three types of age-precipitation particles was firstly identified by lattice streaks in HREM images of the single particles.The experimental method identifying crystal structure of fine and dispersed particles using HREM images of single particle was proposed.
Oxidation rates and scale/steel interface configuration of 9Ni steels were investigated at 1000--1 250 ℃ in air. The results revealed that Cu addition caused high temperature oxidation resistance to deteriorate. High tempera ture oxidation rates increased and scale/steel interface configuration became complicated due to Cu addition. Scale/ steel interface appeared to be network above certain temperature. Temperature required to form network scale/steel interface dropped more than 100 ℃ for 1.5% Cu-containing steel. (Fe,Ni,Cu)x Oy in inner oxidation layer dissocia ted to Fe-Ni-Cu phase and released active oxygen which can react with base steel easily. So the inner oxidation layer became the second source of oxidizing agent besides atmosphere. Internal stress at austenite grain boundary caused local oxide to fragment. So the scale/steel interface appeared to be network. Liquid Si-rich phase formed at sufficient ly high temperature. Penetration of the liquid Si-rich phase along austenite grain enhanced austenite grain oxidizing.