The influence of rare earths(RE) on solidification behavior of a high speed steel for roll was investigated by using differential scanning calorimetry(DSC) in combination of microstructure analysis.It was found that the sequence of solidification was L→γ,L→γ+MC,L→γ+M2C,L→γ+M6C,respectively.The start temperature and the latent heat liberated by unit mass of L→γ and L→γ+MC increased with increase of RE addition,indicating that RE could trigger the crystallization of the primary γ and the MC carbide more effectively.The promoting effect of RE on the heterogeneous nucleation was believed to be an important cause of this effect.Grain refinement,discontinuous network of eutectic carbides and disperse and finer MC were observed in the samples with RE addition,moreover,RES could act as the heterogeneous nucleus of the MC.RE addition was favorable for stable M6C at the expense of the metastable M2C.
The effect of rare earth(RE) on continuous heating transformation of a high speed steel for rolls was investigated by using differ-ential scanning calorimetry(DSC) with combination of microstructure analysis.Determination of the Ac1 and Ac3,the starting temperature of carbide dissolution and melting upon heating,the enthalpy change for the α→γ transformation and overall carbide dissolution were also es-tablished.It was found that RE could reduce the volume fraction of large eutectic carbides and the chrysanthemum-like eutectic colonies but could not change the phase composition.RE made a little change to Ac1,but the variation in Ac3 and enthalpy for the α→γ followed an in-creasing pattern as the RE addition increased.The start temperatures of carbides dissolution increased with increase of RE addition,which may be associated with the influences of RE on the morphology of carbides,but the overall enthalpy change of carbides dissolution decreases as the RE addition increased.Moreover,the start temperature of melting also increased with increasing RE addition.