Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations(namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and-subtracted coherent(SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of nonGaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states(DCSS). The fidelity can reach up to F ≥ 0.98 and F ≥ 0.90 for size of amplitude z = 1.53 and 2.36, respectively.
We explores Hamiltonian reduction in pulse-controlled finite-dimensional quantum systems with near-degenerate eigenstates. A quantum system with a non-degenerate ground state and several near-degenerate excited states is controlled by a short pulse, and the objective is to maximize the collective population on all excited states when we treat all of them as one level. Two cases of the systems are shown to be equivalent to effective two-level systems. When the pulse is weak, simple relations between the original systems and the reduced systems are obtained. When the pulse is strong, these relations are still available for pulses with only one frequency under the first-order approximation.
Quantum measurement is a fundamental problem in quantum control theory and experiments.It can obtain unknown information of quantum systems,and can also change state of the systems inevitably.Both the outcome and back action could be used to control quantum systems.This paper presents recent research progress about optimal control of state transformation in finite-dimensional quantum systems by back action of non-selective quantum measurement,and optimal control of signal and background of CARS (coherent anti-Stokes Raman spectroscopy) by phase shaping technique.In measurement sequence control of finite-dimensional quantum systems,the necessary condition for critical points of the underlying state transformation objective is found to be a highly symmetric form as a chain of equalities,and analytical and numerical solutions in several cases are explored.In the CARS control,it is found that the maximal resonant signal and minimal background at a specific frequency can be achieved by shaping the probe pulse only while keeping pump and Stokes pulses in transform limited forms (TLFs).An arctan-type phase function is obtained for the probe pulse to simultaneously enhance the resonant signal and suppress the background.For broadband background elimination,we find that the optimal phase shaping scheme of probe pulse is quasi-time-delay while keeping the pump and Stokes pulses in TLFs.These conclusions could help design control strategies of quantum devices.