Prototype foamy virus(PFV)is a unique retrovirus that infects animals and humans and does not cause clinical symptoms.Long noncoding RNAs(lncRNAs)are believed to exert multiple regulatory functions during viral infections.Previously,we utilized RNA sequencing(RNA-seq)to characterize and identify the lncRNA lnc-RP5-1086 D14.3.1-1:1(lnc-RP5),which is markedly decreased in PFV-infected cells.However,little is known about the function of lnc-RP5 during PFV infection.In this study,we identified lnc-RP5 as a regulator of the PFV transcriptional transactivator(Tas).Lnc-RP5 enhanced the activity of the PFV internal promoter(IP).The expression of PFV Tas was found to be promoted by lnc-RP5.Moreover,mi R-129-5 p was found to be involved in the lnc-RP5-mediated promotion of PFV IP activity,while the Notch1 protein suppressed the activity of PFV IP and the expression of Tas.Our results demonstrate that lnc-RP5 promotes the expression of PFV Tas through the miR-129-5 p/Notch1/PFV IP axis.This work provides evidence that host lnc RNAs can manipulate PFV replication by employing mi RNAs and proteins during an early viral infection.
Coxsackievirus A16(CVA16) is one of major pathogens of hand, foot and mouth disease(HFMD) in children. Long non-coding RNAs(Inc RNAs) have been implicated in various biological processes,but they have not been associated with CVA16 infection. In this study, we comprehensively characterized the landscape of Inc RNAs of normal and CVA16 infected rhabdomyosarcoma(RD)cells using RNA-Seq to investigate the functional relevance of Inc RNAs. We showed that a total of 760 Inc RNAs were upregulated and 1210 Inc RNAs were downregulated. Out of these dysregulated Inc RNAs, 43.64% were intergenic, 22.31% were sense, 15.89% were intronic, 8.67% were bidirectional, 5.59% were antisense, 3.85% were s RNA host Inc RNAs and 0.05% were enhancer. Six dysregulated Inc RNAs were validated by quantitative PCR assays and the secondary structures of these Inc RNAs were projected. Moreover, we conducted a bioinformatics analysis of an Inc RNAs(ENST00000602478) to elucidate the diversity of modification and functions of Inc RNAs. In summary, the current study compared the dysregulated Inc RNAs profile upon CVA16 challenge and illustrated the intricate relationship between coding and Inc RNAs transcripts. These results may not only provide a complete picture of transcription in CVA16 infected cells but also provide novel molecular targets for treatments of HFMD.