The transitional flow in a pipe is important for delivery, but its characteristics remain to be explored. In this paper, the two-dimensional laser Doppler velocimetry (LDV) is used for the study, focusing on the attenuation characteristics of the axial velocity, the variation of the velocity gradient, the effect of the angle between the axis and the resultant velocity vector, and the relationship between the energy coefficient and the flow state. The attenuation characteristics of the axial velocity along the radial direction are obtained. It is shown that with the increase of the Reynolds number, the change rate of the velocity gradient slows down with a similar distribution, and a rapid decrease is seen in the near wall region. The amplitude and the frequency of the angular variation are obviously improved with the increase of the Reynolds number. The instability of the velocity field is enhanced with the increase of the energy coefficient.
The conservative difference scheme and the third-order Runge-Kutta scheme in combination with the the Crank-Nicholson scheme are used to directly simulate the flow field in a pipe with the Reynolds number of 2 600. The flow field, including the velocity distribution and the turbulence intensity, is obtained by the direct numerical simulation. From the calculated results, the ratio of the linear average velocity along the ultrasonic propagation path to the profile average velocity on the pipe cross-section is also obtained in an ultrasonic flow meter. It is concluded that the direct numerical simulation method can be used to study the ratio of the profile-linear average velocity at low Reynolds number conditions in the transition region and to improve the measurement accuracy of the ultrasonic flow meter.
The surge tank plays an important role in ensuring the stability of a water flow standard device. To study the influence of the structure and the working conditions on the regulator performance of a surge tank, a three-dimensional model, including a surge tank, the pipeline and the water tank is built, and the VOF model in the Fluent software is used to simulate the two-phase pulsatile flow in the surge tank. The inlet flow pulsation is defined by the User Defined Functions (UDF), and the outlet flow is set to be a free jet. By calculating the flow fluctuation coefficient of the variation uader different flow conditions, the influences of the pulse frequency, the initial water level height and the baffle plate structure on the flow stability are analyzed. It is shown that the surge tank has a good attenuation effect on high-frequency pulsations, there is an optimal initial water level to suppress the fluctuations, the round holes of the baffle should ensure a certain circulation area with the bore diameter small enough to have the necessary damping effect.