The mean kinematic and thermodynamic structures of tropical cyclones (TCs) making landfall in main-land China are examined by using sounding data from 1998 to 2009. It is found that TC landfall is usually accompanied with a decrease in low-level wind speed, an expansion of the radius of strong wind, weakening of the upper-level warm core, and drying of the mid-tropospheric air. On average, the warm core of the TCs dissipates 24 h after landfall. The height of the maximum low-level wind and the base of the stable layer both increase with the increased distance to the TC center;however, the former is always higher than the latter. In particular, an asymmetric structure of the TC after landfall is found. The kinematic and thermodynamic structures across various areas of TC circulation diff er, especially over the left-front and right-rear quadrants (relative to the direction of TC motion). In the left-front quadrant, strong winds locate at a smaller radius, the upper-level temperature is warmer with the warm core extending into a deep layer, while the wet air occupies a shallow layer. In the right-rear quadrant, strong wind and wet air dwell in an area that is broader and deeper, and the warmest air is situated farther away from the TC center.
The 6-yr best-track data of tropical cyclones (TCs) in the western North Pacific are used to study the statistical features of TC size and radial wind profile. A TC size is defined as the azimuthal mean radius of 34-kt surface wind. On average, the TCs in the western North Pacific have a size of 203 km, and the size is larger for stronger TCs. Further analyses show that larger TCs tend to move faster than smaller ones, with a 23–24 km difference in size corresponding to a difference of about 10 km h -1 in moving speed. The TCs that recurve from westward to eastward moving have a mean size of 218 km, significantly larger than that of those without a turning point (179 km). Regional TC distributions demonstrate that the TCs affecting the Korean Peninsula and southwestern Japan have the largest mean size (250–280 km). There are also some large TCs affecting southern Philippines, while TCs over the South China Sea are generally small in size. Comparison of intensity and size of all TCs during their lifespan demonstrates that a TC tends to reach its maximum size 6 h after it reaches its maximum intensity, and the decrease rate of size during the weakening stage of a TC is much smaller than the increase rate of size during its developing stage. Thus, linear regression relations between TC size and intensity are established for its developing and weakening stages respectively, which can be used as a forecast tool for TC size. Features of TC radial wind profile are studied by analyzing a parametric wind model based on the radius data of 34-, 50-, and 64-kt surface winds. The results show that the shape parameter d most frequently takes the values of 0.3, 0.4, and 0.5. It generally increases (decreases) as the TC develops (weakens), implying a sharper (flatter) radial wind profile. Changes in d leads the tendency of intensity. The two parameters for the asymmetric model, namely p and q, are mostly 0.85–1.05 and 0–0.2, respectively, embodying the fact that the asymmetric component is general
Analyzed in this paper are the 20-yr(1991-2010)tropical cyclone(TC)intensity from three forecast centers in the Western North Pacific,i.e.China Meteorological Administration(CMA),Japan Meteorological Agency(JMA),and Joint Typhoon Warning Center(JTWC)of the United States.Results show that there is more or less discrepancy in the intensity change of a TC among different datasets.The maximum discrepancy reaches 22 hPa/6h(42 hPa/6h,33 hPa/6h)between CMA and JMA(CMA and JTWC,JMA and JTWC).Special attention is paid to the records for abrupt intensity change,which is currently a difficult issue for forecasters globally.It is found that an abrupt intensity change process recorded by one dataset can have,in some extreme cases,intensity change in another dataset varying from 0 to≥10 hPa/6h with the same sign or the opposite sign.In a total of 2511 cases experiencing rapid intensity change,only 14%have consensus among all the three datasets and 25%have agreement between two of the three datasets.In spite of such a significant uncertainty,the three datasets agree on the general statistical characteristics of abrupt intensity change,including regional and seasonal distribution,the relationship with initial intensity and TC moving speed,and persistence features.Notable disagreement is on very strong systems(SuperTY)and TCs moving very fast.
Intensity variation of tropical cyclones(TCs),especially that of coastal or landfalling TCs,is of great concern in current research.Most of the research papers,however,focus on intensification processes of TCs;only a few discuss decay processes in the lifetime of a TC.In the daily weather operation related to TCs,it is challenging when a TC weakens and/or disappears suddenly,because it brings more difficulties than the forecast of intensifying TCs does.Overestimation of a decaying landfalling TC would lead to over-preparation of defensive measures and result in"crying wolf"mentality with adverse effects.This study summarized physical mechanisms that dominate the decaying process of TCs and listed several possible dynamical factors:reduced level of air temperature,too large or too small speed,contraction of TC size amplification of TC's core,and lightning number in a TC.
Typhoon Vicente(2012) underwent rapid intensification(RI) within 24 h before landfall in China's Mainland. Analysis of the large-scale environment and characteristics of Vicente identifies the aforementioned intensification as classic RI. The process occurred in an environmental flow with a deep-layer shear ranging from 5 ms-1 to 8 ms-1. Convection caused by persistent vertical shear forcing of the vortex was observed primarily in the downshear left quadrant of the storm. However, radar and satellite observations indicate that the northern convection of the inner core of Vicente quickly developed in the down-shear right three hours near landfall.
In this paper,the effects of sea spray on tropical cyclone(TC)structure and intensity variation are evaluated through numerical simulations using an advanced sea-spray parameterization from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory(NOAA/ESRL),which is incorporated in the idealized Advanced Research version of the Weather Research and Forecast (WRF-ARW)model.The effect of sea spray on TC boundary-layer structure is also analyzed.The results show that there is a significant increase in TC intensity when its boundary-layer wind includes the radial and tangential winds,their structure change,and the total surface wind speed change.Diagnosis of the vorticity budget shows that an increase of convergence in TC boundary layer enhances TC vorticity due to the dynamic effect of sea spay.The main kinematic effect of the friction velocity reduction by sea spray produces an increment of large-scale convergence in the TC boundary layer,while the radial and tangential winds significantly increase with an increment of the horizontal gradient maximum of the radial wind, resulting in a final increase in the simulated TC intensity.The surface enthalpy flux enlarges TC intensity and reduces storm structure change to some degree,which results in a secondary thermodynamic impact on TC intensification.Implications of the new interpretation of sea-spray effects on TC intensification are also discussed.
When Typhoon Toraji(2001)reached the Bohai Gulf during 1-2 August 2001,a heavy rainfall event occurred over Shandong province in China along the gulf.The Advanced Research version of the Weather Research and Forecast(WRF-ARW)model was used to explore possible effects of environmental factors,including effects of moisture transportation,upper-level trough interaction with potential vorticity anomalies,tropical cyclone(TC)remnant circulation,and TC boundary-layer process on the re-intensification of Typhoon Toraji,which re-entered the Bohai Gulf after having made a landfall.The National Centers for Environmental Prediction(NCEP)global final(FNL)analysis provided both the initial and lateral boundary conditions for the WRF-ARW model.The model was initialized at 1200 UTC on 31 July and integrated until 1200 UTC on 3 August 2001,during which Toraji remnant experienced the extratropical transition and re-intensification.Five numerical experiments were performed in this study,including one control and four sensitivity experiments.In the control experiment,the simulated typhoon had a track and intensity change similar to those observed.The results from three sensitivity experiments showed that the moisture transfer by a southwesterly lower-level jet,a low vortex to the northeast of China,and the presence of Typhoon Toraji all played important roles in simulated heavy rainfall over Shandong and remnant re-intensification over the sea,which are consistent with the observation.One of the tests illustrated that the local boundary layer forcing played a secondary role in the TC intensity change over the sea.