The question "why are the variation trends of R-X bond dissociation energy different?" is answered. The R-X bond dissociation energy (BDE) may be influenced by three main factors: the C-X intrinsic bond energy, the 1,3 geminal repulsion, and the intramolecular charge-induced dipole. In the presence of atom X, the variation trend of BDE in R-X (R= Me, Et, i-Pr, t-Bu) is dominated by two factors, the 1,3 geminal repulsion and the intramolecular charge-induced dipole. The former decreases the R-X BDE, and the latter either increases or decreases the R-X BDE. For the series of R-X with the R-C bond (such as R-Me, R-CH == CH2, R-C≡CH, and R-CN), the 1,3 geminal repulsion decreases the R-X BDE, and the variation trends of R-C BDE decrease from Me to t-Bu. As regards the series of R-X (such as R-H, R-BH2, and R-SiH2) in which the electronegativity of atom X is smaller than that of the carbon atom, the above two factors decrease the R-X BDE, and the variation trends of the R-X BDE decrease from Me to t-Bu. As to the series of R-X (such as R-F, R-OH, R-Cl, R-Br, R-I, and R-NH2) in which the electronegativity of atom X is larger than that of the carbon atom, the 1,3 geminal repulsion decreases the R-X BDE, while the intramolecular charge-induced dipole increases the R-X BDE. In this case, the variation trends of R-X BDE depend on the competition of the two factors. As a result, some of them (e. g., R-F, R-OH) increase from Me to t-Bu, some (e. g., R-I) decrease from Me to t-Bu, and some (e. g., R-Br) change very little.
CAO ChenZhong School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
This paper summarizes significant progress in quantifying organic substituent effects in the last 20 years. The main content is as follows: (1) The principle of electronegativity equalization has gained wide acceptance, and has been used to calculate the intramolecular charge distribution and inductive effect of groups. A valence electrons equalization method was proposed to compute the molecular electronegativity on the basis of geometric mean method, harmonic mean method, and weighted mean method. This new calculation method further extended the application of the principle of electronegativity equalization. (2) A scale method was established for experimentally determining the electrophilic and nucleophilic ability of reagents, in which benzhydryliumions and quinone methides were taken as the reference compounds, and the research field was extended to the gas phase conditions, organometallic reaction and radicals system. Moreover, the nucleophilicity parameters N and electro- philicity parameters E for a series of reagents were obtained. The definition and quantitative expression of electrophilicity in- dex co and nucleophilicity index co were proposed theoretically, and the correlation between the parameters from experimental determination and the indexes from theoretical calculation was also investigated. (3) The polarizability effect parameter was initially calculated by empirical method and further developed by quantum chemistry method. Recently, the polarizability ef- fect index of alkyl (PEI) and groups (PEIx) were proposed by statistical method, and got wide applications in explaining and estimating gas-phase acidity and basicity, ionization energy, enthalpy of formation, bond energy, reaction rate, water solubility and chromatographic retention for organic compounds. (4) The excited-state substituent constant Crcc obtained directly from the UV absorption energy data of substituted benzenes, is different from the polar constants in molecular ground state and the radical spin-del
The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimental enthalpies of formation △fHФ (g) values of monosubstituted straight-chain alkanes. Based on the IPI(X) and polarizability effect index, a simple and effective model was constructed to estimate the △fHФ (g) values of monosubstituted alkanes RX (including the branched derivatives). The present model takes into account not only the contributions of the alkyl R and the substituent X, but also the contribution of the interaction between R and X. Its stability and prediction ability was confirmed by the results of leave-one-out method. Compared with previous reported studies, the obtained equation can be used to estimate enthalpies of formation for much more kinds of monosubstituted alkanes with less parameters. Thus, it is recommended for the calculation of the △fHФ(g) for the RX.
2,4-diphenylpentane- and 2,4-di-p-tolylpentane-2,4-diols were investigated employing experimental and density functional theory (DFT) method at B3LYP/6-31G (d) level. The structure of syn-2,4-di-p-tolylpentane-2,4-diol (2b) was characterized by X-ray diffraction and compared with the crystal structures of anti- and syn-2,4-diphenylpentane-2,4-diols (la and lb). X-ray diffraction indicates that inter and intra-molecular hydrogen bonds are formed in the crystal structures. There is n-n staking interaction in lb and 2b. Good linear correlations and similar results are found between the experimental 1H and 13C NMR chemical shifts (6~exp) and GIAO (Gauge Independent Atomic Orbital) method calculated magnetic isotropic shielding tensors (acalc). HOMO and LUMO molecular orbitals were calculated at the same levels with the different results. UV-vis absorption spectra of the compounds were recorded in EtOH, MeCN, n-BuOH and cyclohexane with different dielectric constants. It is found that the solvent effect is obvious when e is 24.85(EtOH), 35.69(MeCN) and it is weak when e is decreased to 17.33(n-BuOH), 1.18 (cyclohexane).