An extraordinary-mode (X-mode) frequency-modulated continuous-wave (FMCW) profile reflectometer has been built on EAST. In the reflectometer, continuous waves with fre- quency sweeping from 12.5 GHz to 18 GHz were generated through a Hyperabrupt Tuned-varactor Oscillator (HTO) source and a four times active multiplier was used to increase the frequency to V-band (50 GHz to 72 GHz). The polarization of horn lens antenna is perpendicular to the mag- netic field line at the edge plasmas. According to the V-band frequency range and polarization, the system cover density range from 0.5 x 1019m-3 to 3.0 x 1019m-3 (when toroidal magnetic field is 1.8 T), with time resolution of 12.5 ~ 50 #s. The density profile could be calculated by assuming the edge profile through an empirical equation. The maximum spatial error deduced by the method is about 4 cm. This reflectometer has been successfully applied in 2010 autumn EAST campaign, the temporal evolution of density profiles was acquired during the low confine- ment mode to high confinement mode transition. The density pedestal of EAST Tokamak was observed and the top value and gradient of the density pedestal were estimated.
A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.
The Doppler backscattering system has been widely used for turbulence measurements,and the microwave beam will be backscattered near the cut-off layer when the Brag condition is fulfilled.In tokamak,the ray-tracing code is used to obtain the radial position and perpendicular wave number of the scattering layer for turbulence velocity measurement and the WKB(Wentzel-Kramers-Brillouin) approximation should be satisfied for optical propagation.To calculate the backscattering location and wave number at the cut-off layer only,a single ray tracing in the cross section is enough,while for spatial and wave number resolution calculation,multiple rays reflecting the microwave beam size should be used.Considering the angle between the wave vector and the magnetic field,a three-dimension quasi-optical Gaussian ray tracing is sometimes needed.