A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed location or pre-determined track) exclu- sively by means of active thrusters. The development of control technology promotes the upgrading of dynamic positioning (DP) systems. Today there are two different DP systems solutions available on the market: DP system based on PID regulator and that based on model-based control. Both systems have limited disturbance rejection capability due to their design principle. In this paper, a new DP system solution is proposed based on Active Dis^n'bance Rejection Control (ADRC) technology. This technology is com- posed of Tracking-Differentiator (TD), Extended State Observer (ESO) and Nonlinear Feedback Combination. On one hand, both TD and ESO can act as filters and can be used in place of conventional filters; on the other hand, the total disturbance of the system can be estimated and compensated by ESO, which therefore enhances the system's disturbance rejection capability. This technology's advantages over other methods lie in two aspects: 1) This method itself can not only achieve control objectives but also filter noisy measurements without other specialized filters; 2) This method offers a new useful approach to suppress the ocean disturbance. The simulation results demonstrate the effectiveness of the proposed method.