A heterochromatie tree is an edge-colored tree in which any two edges have different colors. The heterochromatic tree partition number of an r-edge-colored graph G, denoted by tr (G), is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we determine the heterochromatic tree partition number of r-edge-colored complete graphs. We also find at most tr(Kn) vertex-disjoint heterochromatic trees to cover all the vertices in polynomial time for a given r-edge-coloring of Kn.
Let G be a connected graph of order n. The rainbow connection number rc(G) of G was introduced by Chartrand et al. Chandran et al. used the minimum degree of G and obtained an upper bound that rc(G) 〈_ 3n/( δ+ 1) - 3, which is tight up to additive factors. In this paper, we use the minimum degree-sum a2 6n of G to obtain a better bound rc(G) _〈 - 8, especially when is small (constant) but a2 is large (linear in n).